(-2ab^7)^3/(-a^4b^2)^5

2 min read Jun 16, 2024
(-2ab^7)^3/(-a^4b^2)^5

Simplifying the Expression: (-2ab^7)^3 / (-a^4b^2)^5

This problem involves simplifying an expression with exponents. To do so, we'll use the following rules:

Rules of Exponents:

  • Power of a Product: (ab)^n = a^n * b^n
  • Power of a Quotient: (a/b)^n = a^n / b^n
  • Power of a Power: (a^m)^n = a^(m*n)

Step 1: Expand the powers

Apply the "Power of a Product" rule to both the numerator and denominator:

  • Numerator: (-2ab^7)^3 = (-2)^3 * a^3 * (b^7)^3
  • Denominator: (-a^4b^2)^5 = (-1)^5 * (a^4)^5 * (b^2)^5

Step 2: Simplify the exponents

Apply the "Power of a Power" rule to simplify the exponents:

  • Numerator: (-2)^3 * a^3 * (b^7)^3 = -8 * a^3 * b^(7*3) = -8a^3b^21
  • Denominator: (-1)^5 * (a^4)^5 * (b^2)^5 = -1 * a^(45) * b^(25) = -a^20b^10

Step 3: Combine the results

Now we have: (-8a^3b^21) / (-a^20b^10)

Step 4: Simplify using Quotient Rule

Apply the "Power of a Quotient" rule:

  • (-8a^3b^21) / (-a^20b^10) = (-8 / -1) * (a^3 / a^20) * (b^21 / b^10)

Step 5: Final Simplification

Simplify each term:

  • 8 * a^(3-20) * b^(21-10) = 8a^-17b^11

Therefore, the simplified expression is 8a^-17b^11.

Related Post


Featured Posts