(-2x^2y)^2 X (-3xy^3)

2 min read Jun 16, 2024
(-2x^2y)^2 X (-3xy^3)

Simplifying Expressions with Exponents

This article will guide you through simplifying the expression **(-2x²y)² x (-3xy³) **.

Understanding the Properties of Exponents

Before we begin, let's recall some key exponent properties:

  • Product of powers: x<sup>m</sup> * x<sup>n</sup> = x<sup>(m+n)</sup>
  • Power of a product: (xy)<sup>n</sup> = x<sup>n</sup>y<sup>n</sup>
  • Power of a power: (x<sup>m</sup>)<sup>n</sup> = x<sup>(m*n)</sup>

Simplifying the Expression

  1. Simplify (-2x²y)²:

    • Apply the power of a product rule: (-2x²y)² = (-2)²(x²)²(y)² = 4x<sup>4</sup>y²
  2. Combine the simplified terms:

    • We now have: 4x<sup>4</sup>y² * (-3xy³)
  3. Multiply the coefficients and combine variables:

    • 4 * -3 = -12
    • x<sup>4</sup> * x = x<sup>(4+1)</sup> = x<sup>5</sup>
    • y² * y³ = y<sup>(2+3)</sup> = y<sup>5</sup>
  4. Final simplified expression:

    • -12x<sup>5</sup>y<sup>5</sup>

Conclusion

Therefore, the simplified form of (-2x²y)² x (-3xy³) is -12x<sup>5</sup>y<sup>5</sup>. By applying the appropriate exponent rules, we can efficiently simplify complex expressions involving variables and exponents.

Featured Posts