Simplifying the Expression: (1/x-2-2x/4-x^2+1/2+x)(2/x-1)
This article will guide you through the process of simplifying the complex expression: (1/x-2-2x/4-x^2+1/2+x)(2/x-1)
Step 1: Factor the Denominators
Begin by factoring the denominators of the fractions within the expression.
- 4-x²: This can be factored as (2+x)(2-x).
Step 2: Find a Common Denominator
The next step is to find a common denominator for all the fractions in the first set of parentheses. The common denominator is 2x(2+x)(2-x).
Step 3: Rewrite the Fractions with the Common Denominator
Rewrite each fraction in the first set of parentheses with the common denominator:
- 1/x-2: (2+x)(2-x)/2x(2+x)(2-x)
- -2x/4-x²: -4x²/2x(2+x)(2-x)
- 1/2+x: x(2-x)/2x(2+x)(2-x)
- x: 2x²(2+x)(2-x)/2x(2+x)(2-x)
Step 4: Combine the Fractions
Combine the numerators of the fractions over the common denominator:
[(2+x)(2-x) - 4x² + x(2-x) + 2x²(2+x)(2-x)] / 2x(2+x)(2-x)
Step 5: Simplify the Numerator
Expand and simplify the numerator:
[4 - x² - 4x² + 2x - x² + 4x⁴ + 8x³ + 4x²] / 2x(2+x)(2-x)
Combine like terms:
[4x⁴ + 8x³ - 3x² + 2x + 4] / 2x(2+x)(2-x)
Step 6: Multiply by the Second Fraction
Now, multiply the simplified expression by the second fraction (2/x-1):
[4x⁴ + 8x³ - 3x² + 2x + 4] / 2x(2+x)(2-x) * (2/x-1)
Step 7: Simplify the Expression
-
Cancel common factors: The 2 in the numerator and denominator cancel.
-
Multiply the remaining terms:
(4x⁴ + 8x³ - 3x² + 2x + 4) / (x(2+x)(2-x)(x-1))
Final Simplified Expression:
The simplified expression is (4x⁴ + 8x³ - 3x² + 2x + 4) / (x(2+x)(2-x)(x-1)).
Important Note: The expression is undefined when x = 0, x = -2, x = 2, and x = 1 because these values would make the denominator equal to zero.