(2a+5b)(3b+4a)-(7a+3b)(2a+b)

2 min read Jun 16, 2024
(2a+5b)(3b+4a)-(7a+3b)(2a+b)

Expanding and Simplifying the Expression (2a+5b)(3b+4a)-(7a+3b)(2a+b)

This expression involves expanding two binomials and then subtracting the results. Let's break it down step by step:

Expanding the First Product: (2a+5b)(3b+4a)

We can use the FOIL method (First, Outer, Inner, Last) to expand this product:

  • First: (2a)(3b) = 6ab
  • Outer: (2a)(4a) = 8a²
  • Inner: (5b)(3b) = 15b²
  • Last: (5b)(4a) = 20ab

Combining these terms, we get: 6ab + 8a² + 15b² + 20ab

Expanding the Second Product: (7a+3b)(2a+b)

Again using the FOIL method:

  • First: (7a)(2a) = 14a²
  • Outer: (7a)(b) = 7ab
  • Inner: (3b)(2a) = 6ab
  • Last: (3b)(b) = 3b²

This simplifies to: 14a² + 7ab + 6ab + 3b²

Combining the Expanded Products

Now we have:

(6ab + 8a² + 15b² + 20ab) - (14a² + 7ab + 6ab + 3b²)

To subtract, we distribute the negative sign:

6ab + 8a² + 15b² + 20ab - 14a² - 7ab - 6ab - 3b²

Simplifying the Expression

Finally, we combine like terms:

(8a² - 14a²) + (6ab + 20ab - 7ab - 6ab) + (15b² - 3b²)

This simplifies to:

-6a² + 13ab + 12b²

Therefore, the simplified form of the expression (2a+5b)(3b+4a)-(7a+3b)(2a+b) is -6a² + 13ab + 12b².

Related Post


Featured Posts