Expanding the Expression (2a-4b)(7a-2b)
In mathematics, expanding an expression means multiplying out the terms within parentheses. Let's expand the expression (2a-4b)(7a-2b).
Using the FOIL Method
We can use the FOIL method to expand this expression:
- First: Multiply the first terms of each binomial: (2a)(7a) = 14a²
- Outer: Multiply the outer terms of each binomial: (2a)(-2b) = -4ab
- Inner: Multiply the inner terms of each binomial: (-4b)(7a) = -28ab
- Last: Multiply the last terms of each binomial: (-4b)(-2b) = 8b²
Combining Like Terms
Now we have: 14a² - 4ab - 28ab + 8b²
Combining like terms, we get:
14a² - 32ab + 8b²
Conclusion
Therefore, the expanded form of (2a-4b)(7a-2b) is 14a² - 32ab + 8b².