(2a-4b)(7a-2b)

less than a minute read Jun 16, 2024
(2a-4b)(7a-2b)

Expanding the Expression (2a-4b)(7a-2b)

In mathematics, expanding an expression means multiplying out the terms within parentheses. Let's expand the expression (2a-4b)(7a-2b).

Using the FOIL Method

We can use the FOIL method to expand this expression:

  • First: Multiply the first terms of each binomial: (2a)(7a) = 14a²
  • Outer: Multiply the outer terms of each binomial: (2a)(-2b) = -4ab
  • Inner: Multiply the inner terms of each binomial: (-4b)(7a) = -28ab
  • Last: Multiply the last terms of each binomial: (-4b)(-2b) = 8b²

Combining Like Terms

Now we have: 14a² - 4ab - 28ab + 8b²

Combining like terms, we get:

14a² - 32ab + 8b²

Conclusion

Therefore, the expanded form of (2a-4b)(7a-2b) is 14a² - 32ab + 8b².

Related Post


Featured Posts