(2m^3+m^2+m+9)÷(2m-1)

5 min read Jun 16, 2024
(2m^3+m^2+m+9)÷(2m-1)

Polynomial Long Division: (2m^3 + m^2 + m + 9) ÷ (2m - 1)

This article will guide you through the process of dividing the polynomial (2m^3 + m^2 + m + 9) by (2m - 1) using polynomial long division.

Steps:

  1. Set up the division problem:

         ________
    2m-1 | 2m^3 + m^2 + m + 9 
    
  2. Divide the leading terms:

    • Divide the leading term of the dividend (2m^3) by the leading term of the divisor (2m): (2m^3) / (2m) = m^2
    • Write m^2 above the m^2 term in the dividend.
         m^2_______
    2m-1 | 2m^3 + m^2 + m + 9 
    
  3. Multiply the divisor by the quotient term:

    • Multiply (2m - 1) by m^2: (2m - 1)(m^2) = 2m^3 - m^2
    • Write the result below the dividend, aligning like terms:
         m^2_______
    2m-1 | 2m^3 + m^2 + m + 9 
           2m^3 - m^2
           -------
    
  4. Subtract:

    • Subtract the terms: (2m^3 + m^2) - (2m^3 - m^2) = 2m^2
    • Bring down the next term from the dividend:
         m^2_______
    2m-1 | 2m^3 + m^2 + m + 9 
           2m^3 - m^2
           -------
                2m^2 + m
    
  5. Repeat steps 2-4:

    • Divide the leading term of the new dividend (2m^2) by the leading term of the divisor (2m): (2m^2) / (2m) = m
    • Write m above the m term in the dividend.
         m^2 + m____
    2m-1 | 2m^3 + m^2 + m + 9 
           2m^3 - m^2
           -------
                2m^2 + m
    
    • Multiply (2m - 1) by m: (2m - 1)(m) = 2m^2 - m
    • Write the result below:
         m^2 + m____
    2m-1 | 2m^3 + m^2 + m + 9 
           2m^3 - m^2
           -------
                2m^2 + m
                2m^2 - m
                -------
    
    • Subtract: (2m^2 + m) - (2m^2 - m) = 2m
    • Bring down the next term:
         m^2 + m____
    2m-1 | 2m^3 + m^2 + m + 9 
           2m^3 - m^2
           -------
                2m^2 + m
                2m^2 - m
                -------
                       2m + 9 
    
  6. Repeat steps 2-4 again:

    • Divide the leading term of the new dividend (2m) by the leading term of the divisor (2m): (2m) / (2m) = 1
    • Write 1 above the constant term in the dividend.
         m^2 + m + 1_
    2m-1 | 2m^3 + m^2 + m + 9 
           2m^3 - m^2
           -------
                2m^2 + m
                2m^2 - m
                -------
                       2m + 9
                       2m - 1
                       -----
    
    • Multiply (2m - 1) by 1: (2m - 1)(1) = 2m - 1
    • Write the result below:
         m^2 + m + 1_
    2m-1 | 2m^3 + m^2 + m + 9 
           2m^3 - m^2
           -------
                2m^2 + m
                2m^2 - m
                -------
                       2m + 9
                       2m - 1
                       -----
    
    • Subtract: (2m + 9) - (2m - 1) = 10
         m^2 + m + 1_
    2m-1 | 2m^3 + m^2 + m + 9 
           2m^3 - m^2
           -------
                2m^2 + m
                2m^2 - m
                -------
                       2m + 9
                       2m - 1
                       -----
                           10
    
  7. The Result:

    • The quotient is m^2 + m + 1.
    • The remainder is 10.

    Therefore, (2m^3 + m^2 + m + 9) ÷ (2m - 1) = m^2 + m + 1 + 10/(2m - 1).

Related Post


Featured Posts