Simplifying the Expression (2x+3)(2x-3)-(2x+3)^2
This article will guide you through the process of simplifying the algebraic expression (2x+3)(2x-3)-(2x+3)^2.
Understanding the Expression
The expression involves two operations:
- Multiplication: (2x+3)(2x-3) and (2x+3)^2
- Subtraction: Subtracting the result of the second multiplication from the result of the first.
Simplifying the Expression Step-by-Step
-
Expand (2x+3)(2x-3) using the difference of squares pattern:
- (a+b)(a-b) = a^2 - b^2
- Therefore, (2x+3)(2x-3) = (2x)^2 - (3)^2 = 4x^2 - 9
-
Expand (2x+3)^2 using the square of a binomial pattern:
- (a+b)^2 = a^2 + 2ab + b^2
- Therefore, (2x+3)^2 = (2x)^2 + 2(2x)(3) + (3)^2 = 4x^2 + 12x + 9
-
Substitute the simplified expressions back into the original expression:
- (2x+3)(2x-3)-(2x+3)^2 = (4x^2 - 9) - (4x^2 + 12x + 9)
-
Distribute the negative sign:
- 4x^2 - 9 - 4x^2 - 12x - 9
-
Combine like terms:
- (4x^2 - 4x^2) - 12x + (-9 - 9) = -12x - 18
Final Result
Therefore, the simplified form of the expression (2x+3)(2x-3)-(2x+3)^2 is -12x - 18.