(2x+3)(x+6)-(2x-5)(x+10)

2 min read Jun 16, 2024
(2x+3)(x+6)-(2x-5)(x+10)

Simplifying the Expression (2x+3)(x+6)-(2x-5)(x+10)

This article will guide you through simplifying the given algebraic expression: (2x+3)(x+6)-(2x-5)(x+10)

Expanding the Expressions

We will start by expanding the products using the FOIL method (First, Outer, Inner, Last).

Step 1: Expand (2x+3)(x+6)

  • First: (2x)(x) = 2x²
  • Outer: (2x)(6) = 12x
  • Inner: (3)(x) = 3x
  • Last: (3)(6) = 18

Therefore, (2x+3)(x+6) = 2x² + 12x + 3x + 18 = 2x² + 15x + 18

Step 2: Expand (2x-5)(x+10)

  • First: (2x)(x) = 2x²
  • Outer: (2x)(10) = 20x
  • Inner: (-5)(x) = -5x
  • Last: (-5)(10) = -50

Therefore, (2x-5)(x+10) = 2x² + 20x - 5x - 50 = 2x² + 15x - 50

Combining the Expanded Expressions

Now we have:

(2x² + 15x + 18) - (2x² + 15x - 50)

Step 3: Distribute the negative sign:

2x² + 15x + 18 - 2x² - 15x + 50

Step 4: Combine like terms:

(2x² - 2x²) + (15x - 15x) + (18 + 50) = 68

Conclusion

Therefore, the simplified form of the expression (2x+3)(x+6)-(2x-5)(x+10) is 68.

Related Post