Dividing Polynomials: A Step-by-Step Guide
This article will guide you through the process of dividing the polynomial 2x^5 + x^4 - 15x^3 - 2x^2 + 10x - 24 by x^2 - x - 4.
The Long Division Method
We will be using the long division method for polynomials. This method is similar to the long division you learned for numbers.
-
Set up the division. Write the dividend (2x^5 + x^4 - 15x^3 - 2x^2 + 10x - 24) inside the division symbol and the divisor (x^2 - x - 4) outside.
____________ x^2-x-4 | 2x^5 + x^4 - 15x^3 - 2x^2 + 10x - 24
-
Divide the leading terms. Focus on the leading term of the divisor (x^2) and the leading term of the dividend (2x^5). What do you need to multiply x^2 by to get 2x^5? The answer is 2x^3.
2x^3 _______ x^2-x-4 | 2x^5 + x^4 - 15x^3 - 2x^2 + 10x - 24
-
Multiply the quotient by the divisor. Multiply 2x^3 by (x^2 - x - 4) and write the result below the dividend.
2x^3 _______ x^2-x-4 | 2x^5 + x^4 - 15x^3 - 2x^2 + 10x - 24 2x^5 - 2x^4 - 8x^3
-
Subtract. Change the signs of the terms in the second row and add.
2x^3 _______ x^2-x-4 | 2x^5 + x^4 - 15x^3 - 2x^2 + 10x - 24 2x^5 - 2x^4 - 8x^3 ------------------ 3x^4 - 7x^3
-
Bring down the next term. Bring down the next term of the dividend (-2x^2).
2x^3 _______ x^2-x-4 | 2x^5 + x^4 - 15x^3 - 2x^2 + 10x - 24 2x^5 - 2x^4 - 8x^3 ------------------ 3x^4 - 7x^3 - 2x^2
-
Repeat steps 2-5. Now, focus on the leading term of the new dividend (3x^4) and the leading term of the divisor (x^2). What do you need to multiply x^2 by to get 3x^4? The answer is 3x^2.
2x^3 + 3x^2 _______ x^2-x-4 | 2x^5 + x^4 - 15x^3 - 2x^2 + 10x - 24 2x^5 - 2x^4 - 8x^3 ------------------ 3x^4 - 7x^3 - 2x^2 3x^4 - 3x^3 - 12x^2
-
Subtract and bring down. Change the signs of the second row, add, and bring down the next term (10x).
2x^3 + 3x^2 _______ x^2-x-4 | 2x^5 + x^4 - 15x^3 - 2x^2 + 10x - 24 2x^5 - 2x^4 - 8x^3 ------------------ 3x^4 - 7x^3 - 2x^2 3x^4 - 3x^3 - 12x^2 ------------------ -4x^3 + 10x^2 + 10x
-
Repeat steps 2-5. Continue this process until the degree of the dividend is less than the degree of the divisor.
2x^3 + 3x^2 - 4x _______ x^2-x-4 | 2x^5 + x^4 - 15x^3 - 2x^2 + 10x - 24 2x^5 - 2x^4 - 8x^3 ------------------ 3x^4 - 7x^3 - 2x^2 3x^4 - 3x^3 - 12x^2 ------------------ -4x^3 + 10x^2 + 10x -4x^3 + 4x^2 + 16x ------------------ 6x^2 - 6x - 24
-
Final step. Focus on the leading term of the new dividend (6x^2) and the leading term of the divisor (x^2). What do you need to multiply x^2 by to get 6x^2? The answer is 6.
2x^3 + 3x^2 - 4x + 6 x^2-x-4 | 2x^5 + x^4 - 15x^3 - 2x^2 + 10x - 24 2x^5 - 2x^4 - 8x^3 ------------------ 3x^4 - 7x^3 - 2x^2 3x^4 - 3x^3 - 12x^2 ------------------ -4x^3 + 10x^2 + 10x -4x^3 + 4x^2 + 16x ------------------ 6x^2 - 6x - 24 6x^2 - 6x - 24 ---------------- 0
The Result
The result of the division is:
(2x^5 + x^4 - 15x^3 - 2x^2 + 10x - 24) / (x^2 - x - 4) = 2x^3 + 3x^2 - 4x + 6
Important Note:
This method can be applied to any division of polynomials. The key is to remember to focus on the leading terms of the divisor and the dividend at each step.