Expanding and Simplifying (2x – 5y)3 – (2x + 5y)3
This problem involves expanding and simplifying a difference of cubes. Here's how we approach it:
Understanding the Difference of Cubes Formula
The difference of cubes formula states: a³ - b³ = (a - b)(a² + ab + b²)
Applying the Formula
-
Identify 'a' and 'b': In our problem, a = (2x - 5y) and b = (2x + 5y).
-
Substitute into the formula: (2x - 5y)³ - (2x + 5y)³ = [(2x - 5y) - (2x + 5y)][(2x - 5y)² + (2x - 5y)(2x + 5y) + (2x + 5y)²]
-
Simplify:
- First bracket: (2x - 5y) - (2x + 5y) = -10y
- Second bracket:
- (2x - 5y)² = 4x² - 20xy + 25y²
- (2x - 5y)(2x + 5y) = 4x² - 25y²
- (2x + 5y)² = 4x² + 20xy + 25y²
-
Combine terms: -10y (4x² - 20xy + 25y² + 4x² - 25y² + 4x² + 20xy + 25y²) = -10y (12x² + 25y²)
-
Final Simplification: -10y (12x² + 25y²) = -120x²y - 250y³
Conclusion
Therefore, the simplified expression for (2x – 5y)³ – (2x + 5y)³ is -120x²y - 250y³.