(2x-3)2+4x2(x-7) 4(x-2)3

2 min read Jun 16, 2024
(2x-3)2+4x2(x-7) 4(x-2)3

Simplifying the Expression: (2x-3)2 + 4x2(x-7) 4(x-2)3

This expression involves multiple terms with exponents and parentheses. To simplify it, we need to follow the order of operations (PEMDAS/BODMAS) and apply the necessary algebraic rules.

Step 1: Expand the powers

  • (2x-3)2: This is a binomial squared, which expands as (2x-3)(2x-3) using the FOIL method:
    • First: (2x)(2x) = 4x²
    • Outer: (2x)(-3) = -6x
    • Inner: (-3)(2x) = -6x
    • Last: (-3)(-3) = 9
    • Combining like terms: 4x² - 12x + 9
  • 4(x-2)3: This represents 4 multiplied by the cube of (x-2). Expanding the cube:
    • (x-2)3 = (x-2)(x-2)(x-2)
    • Using the distributive property (or FOIL method) repeatedly, we get: x³ - 6x² + 12x - 8
    • Multiplying by 4: 4x³ - 24x² + 48x - 32

Step 2: Simplify the entire expression

Now we have: (4x² - 12x + 9) + 4x²(x-7) + (4x³ - 24x² + 48x - 32)

  • Distribute 4x²: 4x² (x-7) = 4x³ - 28x²
  • Combine like terms:
    • x³ terms: 4x³ + 4x³ = 8x³
    • x² terms: 4x² - 28x² - 24x² = -48x²
    • x terms: -12x + 48x = 36x
    • Constant terms: 9 - 32 = -23

Step 3: Final simplified expression

Therefore, the simplified expression is: 8x³ - 48x² + 36x - 23

Related Post


Featured Posts