Expanding (2x - 3y)^4 using the Binomial Theorem
The Binomial Theorem provides a formula for expanding expressions of the form (a + b)^n. In this case, we want to expand (2x - 3y)^4.
The Binomial Theorem:
(a + b)^n = Σ (n choose k) * a^(n-k) * b^k
where:
- n is a positive integer (the power)
- k is an integer from 0 to n
- (n choose k) is the binomial coefficient, calculated as n! / (k! * (n-k)!).
Applying the Theorem to (2x - 3y)^4:
-
Identify 'a' and 'b':
- a = 2x
- b = -3y
-
Apply the Binomial Theorem: (2x - 3y)^4 = Σ (4 choose k) * (2x)^(4-k) * (-3y)^k
-
Expand the summation: (2x - 3y)^4 = (4 choose 0) * (2x)^4 * (-3y)^0 + (4 choose 1) * (2x)^3 * (-3y)^1 + (4 choose 2) * (2x)^2 * (-3y)^2 + (4 choose 3) * (2x)^1 * (-3y)^3 + (4 choose 4) * (2x)^0 * (-3y)^4
-
Calculate the binomial coefficients and simplify: (2x - 3y)^4 = 1 * 16x^4 * 1 + 4 * 8x^3 * (-3y) + 6 * 4x^2 * 9y^2 + 4 * 2x * (-27y^3) + 1 * 1 * 81y^4
-
Combine the terms: (2x - 3y)^4 = 16x^4 - 96x^3y + 216x^2y^2 - 216xy^3 + 81y^4
Therefore, the expansion of (2x - 3y)^4 is 16x^4 - 96x^3y + 216x^2y^2 - 216xy^3 + 81y^4.