Polynomial Division: (2x³−3x²+6x+4) ÷ (2x+1)
This article will guide you through the process of dividing the polynomial (2x³−3x²+6x+4) by the binomial (2x+1).
Long Division Method
-
Set up the problem: Write the polynomials in a long division format.
____________ 2x+1 | 2x³ - 3x² + 6x + 4
-
Divide the leading terms: Divide the leading term of the dividend (2x³) by the leading term of the divisor (2x). This gives us x².
x² _________ 2x+1 | 2x³ - 3x² + 6x + 4
-
Multiply and subtract: Multiply the divisor (2x+1) by the quotient term (x²) and subtract the result from the dividend.
x² _________ 2x+1 | 2x³ - 3x² + 6x + 4 -(2x³ + x²) ---------------- -4x² + 6x
-
Bring down the next term: Bring down the next term from the dividend (6x).
x² _________ 2x+1 | 2x³ - 3x² + 6x + 4 -(2x³ + x²) ---------------- -4x² + 6x -4x² + 6x
-
Repeat steps 2-4: Divide the new leading term (-4x²) by the leading term of the divisor (2x). This gives us -2x. Multiply the divisor by this quotient term and subtract. Bring down the next term (4).
x² - 2x _______ 2x+1 | 2x³ - 3x² + 6x + 4 -(2x³ + x²) ---------------- -4x² + 6x -4x² + 6x -------------- +4
-
Final step: Divide the new leading term (4) by the leading term of the divisor (2x). This gives us 2. Multiply the divisor by this quotient term and subtract.
x² - 2x + 2 _______ 2x+1 | 2x³ - 3x² + 6x + 4 -(2x³ + x²) ---------------- -4x² + 6x -4x² + 6x -------------- +4 -(4 + 2) ------- 2
Therefore, the quotient is (x² - 2x + 2) and the remainder is 2.
The complete division can be expressed as:
(2x³−3x²+6x+4) ÷ (2x+1) = (x² - 2x + 2) + 2/(2x+1)