(2x4+5x3+3x2+8x+12)÷(2x+3) Quotient And Remainder

4 min read Jun 16, 2024
(2x4+5x3+3x2+8x+12)÷(2x+3) Quotient And Remainder

Dividing Polynomials: Finding the Quotient and Remainder

This article will guide you through the process of dividing the polynomial (2x⁴ + 5x³ + 3x² + 8x + 12) by the polynomial (2x + 3), determining the quotient and remainder.

Polynomial Long Division

The process of dividing polynomials resembles the long division of numbers. Let's break down the steps:

  1. Set up the division:

         ____________
    2x + 3 | 2x⁴ + 5x³ + 3x² + 8x + 12 
    
  2. Divide the leading terms:

    • Divide the leading term of the dividend (2x⁴) by the leading term of the divisor (2x). This gives us x³.
    • Write x³ above the dividend.
         x³ ___________
    2x + 3 | 2x⁴ + 5x³ + 3x² + 8x + 12 
    
  3. Multiply the divisor by the term just written:

    • Multiply (2x + 3) by x³ to get 2x⁴ + 3x³.
    • Write this result below the dividend.
         x³ ___________
    2x + 3 | 2x⁴ + 5x³ + 3x² + 8x + 12 
            2x⁴ + 3x³
    
  4. Subtract:

    • Subtract the result from the dividend.
         x³ ___________
    2x + 3 | 2x⁴ + 5x³ + 3x² + 8x + 12 
            2x⁴ + 3x³
            ---------
                  2x³ + 3x² 
    
  5. Bring down the next term:

    • Bring down the next term from the dividend (3x²).
         x³ ___________
    2x + 3 | 2x⁴ + 5x³ + 3x² + 8x + 12 
            2x⁴ + 3x³
            ---------
                  2x³ + 3x² + 8x 
    
  6. Repeat steps 2-5:

    • Divide the leading term of the new dividend (2x³) by the leading term of the divisor (2x). This gives us x².
    • Write x² above the dividend.
    • Multiply (2x + 3) by x² to get 2x³ + 3x².
    • Subtract the result from the new dividend.
    • Bring down the next term (8x).
         x³ + x² ______
    2x + 3 | 2x⁴ + 5x³ + 3x² + 8x + 12 
            2x⁴ + 3x³
            ---------
                  2x³ + 3x² + 8x 
                  2x³ + 3x²
                  ---------
                        5x + 12 
    
  7. Continue the process:

    • Divide the leading term of the new dividend (5x) by the leading term of the divisor (2x). This gives us 5/2.
    • Write 5/2 above the dividend.
    • Multiply (2x + 3) by 5/2 to get 5x + 15/2.
    • Subtract the result from the new dividend.
         x³ + x² + 5/2 ____
    2x + 3 | 2x⁴ + 5x³ + 3x² + 8x + 12 
            2x⁴ + 3x³
            ---------
                  2x³ + 3x² + 8x 
                  2x³ + 3x²
                  ---------
                        5x + 12 
                        5x + 15/2
                        -------
                          9/2
    
  8. The quotient and remainder:

    • The quotient is the polynomial above the division line: x³ + x² + 5/2.
    • The remainder is the term below the line: 9/2.

Verification

We can verify our solution by multiplying the quotient by the divisor and adding the remainder:

(x³ + x² + 5/2) * (2x + 3) + 9/2 = 2x⁴ + 5x³ + 3x² + 8x + 12

This confirms that our quotient and remainder are correct.

Therefore, the division of (2x⁴ + 5x³ + 3x² + 8x + 12) by (2x + 3) yields:

  • Quotient: x³ + x² + 5/2
  • Remainder: 9/2

Related Post


Featured Posts