Dividing Polynomials: Finding the Quotient and Remainder
This article will guide you through the process of dividing the polynomial (2x⁴ + 5x³ + 3x² + 8x + 12) by the polynomial (2x + 3), determining the quotient and remainder.
Polynomial Long Division
The process of dividing polynomials resembles the long division of numbers. Let's break down the steps:
-
Set up the division:
____________ 2x + 3 | 2x⁴ + 5x³ + 3x² + 8x + 12
-
Divide the leading terms:
- Divide the leading term of the dividend (2x⁴) by the leading term of the divisor (2x). This gives us x³.
- Write x³ above the dividend.
x³ ___________ 2x + 3 | 2x⁴ + 5x³ + 3x² + 8x + 12
-
Multiply the divisor by the term just written:
- Multiply (2x + 3) by x³ to get 2x⁴ + 3x³.
- Write this result below the dividend.
x³ ___________ 2x + 3 | 2x⁴ + 5x³ + 3x² + 8x + 12 2x⁴ + 3x³
-
Subtract:
- Subtract the result from the dividend.
x³ ___________ 2x + 3 | 2x⁴ + 5x³ + 3x² + 8x + 12 2x⁴ + 3x³ --------- 2x³ + 3x²
-
Bring down the next term:
- Bring down the next term from the dividend (3x²).
x³ ___________ 2x + 3 | 2x⁴ + 5x³ + 3x² + 8x + 12 2x⁴ + 3x³ --------- 2x³ + 3x² + 8x
-
Repeat steps 2-5:
- Divide the leading term of the new dividend (2x³) by the leading term of the divisor (2x). This gives us x².
- Write x² above the dividend.
- Multiply (2x + 3) by x² to get 2x³ + 3x².
- Subtract the result from the new dividend.
- Bring down the next term (8x).
x³ + x² ______ 2x + 3 | 2x⁴ + 5x³ + 3x² + 8x + 12 2x⁴ + 3x³ --------- 2x³ + 3x² + 8x 2x³ + 3x² --------- 5x + 12
-
Continue the process:
- Divide the leading term of the new dividend (5x) by the leading term of the divisor (2x). This gives us 5/2.
- Write 5/2 above the dividend.
- Multiply (2x + 3) by 5/2 to get 5x + 15/2.
- Subtract the result from the new dividend.
x³ + x² + 5/2 ____ 2x + 3 | 2x⁴ + 5x³ + 3x² + 8x + 12 2x⁴ + 3x³ --------- 2x³ + 3x² + 8x 2x³ + 3x² --------- 5x + 12 5x + 15/2 ------- 9/2
-
The quotient and remainder:
- The quotient is the polynomial above the division line: x³ + x² + 5/2.
- The remainder is the term below the line: 9/2.
Verification
We can verify our solution by multiplying the quotient by the divisor and adding the remainder:
(x³ + x² + 5/2) * (2x + 3) + 9/2 = 2x⁴ + 5x³ + 3x² + 8x + 12
This confirms that our quotient and remainder are correct.
Therefore, the division of (2x⁴ + 5x³ + 3x² + 8x + 12) by (2x + 3) yields:
- Quotient: x³ + x² + 5/2
- Remainder: 9/2