Expanding (3a + 4b + 5c)^2
The expression (3a + 4b + 5c)^2 represents the square of a trinomial. To expand it, we can apply the distributive property or use a specific formula.
Using the Distributive Property
- Rewrite the expression: (3a + 4b + 5c)^2 = (3a + 4b + 5c)(3a + 4b + 5c)
- Distribute: Multiply each term in the first trinomial by each term in the second trinomial.
- (3a)(3a) + (3a)(4b) + (3a)(5c) + (4b)(3a) + (4b)(4b) + (4b)(5c) + (5c)(3a) + (5c)(4b) + (5c)(5c)
- Simplify: Combine like terms.
- 9a^2 + 12ab + 15ac + 12ab + 16b^2 + 20bc + 15ac + 20bc + 25c^2
- Final result: 9a^2 + 24ab + 30ac + 16b^2 + 40bc + 25c^2
Using the Formula
The square of a trinomial can be expanded using the following formula:
(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc
Applying this formula to our expression:
(3a + 4b + 5c)^2 = (3a)^2 + (4b)^2 + (5c)^2 + 2(3a)(4b) + 2(3a)(5c) + 2(4b)(5c)
Simplifying:
(3a + 4b + 5c)^2 = 9a^2 + 16b^2 + 25c^2 + 24ab + 30ac + 40bc
Therefore, the expanded form of (3a + 4b + 5c)^2 is 9a^2 + 24ab + 30ac + 16b^2 + 40bc + 25c^2.