(3a^2b)^3(ab^3)^2/(a^2b^2)^4

4 min read Jun 16, 2024
(3a^2b)^3(ab^3)^2/(a^2b^2)^4

Simplifying Algebraic Expressions: (3a^2b)^3(ab^3)^2/(a^2b^2)^4

This article will guide you through simplifying the algebraic expression (3a^2b)^3(ab^3)^2/(a^2b^2)^4. We'll break down the process step by step to make it easy to understand.

Understanding the Rules

Before we begin, let's review some key rules of exponents:

  • Product of powers: x<sup>m</sup> * x<sup>n</sup> = x<sup>m+n</sup>
  • Power of a product: (xy)<sup>m</sup> = x<sup>m</sup> * y<sup>m</sup>
  • Power of a power: (x<sup>m</sup>)<sup>n</sup> = x<sup>m*n</sup>
  • Quotient of powers: x<sup>m</sup> / x<sup>n</sup> = x<sup>m-n</sup>

Simplifying the Expression

  1. Expand the powers:

    (3a<sup>2</sup>b)<sup>3</sup> = 3<sup>3</sup> * a<sup>2*3</sup> * b<sup>3</sup> = 27a<sup>6</sup>b<sup>3</sup>

    (ab<sup>3</sup>)<sup>2</sup> = a<sup>2</sup> * b<sup>3*2</sup> = a<sup>2</sup>b<sup>6</sup>

    (a<sup>2</sup>b<sup>2</sup>)<sup>4</sup> = a<sup>24</sup> * b<sup>24</sup> = a<sup>8</sup>b<sup>8</sup>

  2. Substitute the expanded terms back into the original expression:

    (27a<sup>6</sup>b<sup>3</sup>)(a<sup>2</sup>b<sup>6</sup>) / (a<sup>8</sup>b<sup>8</sup>)

  3. Combine like terms in the numerator:

    27a<sup>6+2</sup>b<sup>3+6</sup> / (a<sup>8</sup>b<sup>8</sup>) = 27a<sup>8</sup>b<sup>9</sup> / (a<sup>8</sup>b<sup>8</sup>)

  4. Apply the quotient of powers rule:

    27a<sup>8-8</sup>b<sup>9-8</sup> = 27a<sup>0</sup>b<sup>1</sup>

  5. Simplify further, knowing a<sup>0</sup> = 1:

    27 * 1 * b = 27b

Conclusion

Therefore, the simplified form of the expression (3a<sup>2</sup>b)<sup>3</sup>(ab<sup>3</sup>)<sup>2</sup>/(a<sup>2</sup>b<sup>2</sup>)<sup>4</sup> is 27b. By understanding the rules of exponents and applying them systematically, we can effectively simplify complex algebraic expressions.

Related Post