Solving (3a - 1/2)(3a - 1/2)
This expression represents the square of the binomial (3a - 1/2). We can solve this by using the FOIL method or by applying the square of a binomial formula.
Using FOIL Method
FOIL stands for First, Outer, Inner, Last. It helps us multiply two binomials systematically.
- First: Multiply the first terms of each binomial: 3a * 3a = 9a²
- Outer: Multiply the outer terms of the binomials: 3a * (-1/2) = -3/2a
- Inner: Multiply the inner terms of the binomials: (-1/2) * 3a = -3/2a
- Last: Multiply the last terms of each binomial: (-1/2) * (-1/2) = 1/4
Now, combine all the terms:
9a² - 3/2a - 3/2a + 1/4
Simplify the expression by combining like terms:
9a² - 3a + 1/4
Using the Square of a Binomial Formula
The square of a binomial formula states: (a - b)² = a² - 2ab + b²
- Identify 'a' and 'b':
- a = 3a
- b = 1/2
- Apply the formula:
- (3a)² - 2(3a)(1/2) + (1/2)²
- Simplify the expression:
- 9a² - 3a + 1/4
Therefore, the solution of (3a - 1/2)(3a - 1/2) is 9a² - 3a + 1/4.