Simplifying Expressions with Exponents
Let's simplify the following expression:
(3ab^2c)^2(-2a^2b^4)^2(a^4c^2)^3(a^2b^4c^5)^2(2a^3b^2c^4)^3
To simplify this expression, we'll use the following rules of exponents:
- (a^m)^n = a^(m*n)
- (ab)^n = a^n * b^n
- a^m * a^n = a^(m+n)
Step 1: Apply the first rule to each term in the expression.
This gives us:
- 3^2 a^2 b^4 c^2 * (-2)^2 a^4 b^8 * a^12 c^6 * a^4 b^8 c^10 * 2^3 a^9 b^6 c^12
Step 2: Combine like terms.
This means multiplying the coefficients together and adding the exponents of the same variables:
- (9 * 4 * 8) * a^(2+4+12+4+9) * b^(4+8+8+6) * c^(2+6+10+12)
Step 3: Simplify the expression.
- 288 * a^31 * b^26 * c^30
Therefore, the simplified expression is 288a^31b^26c^30.