(3x+4)(2x-5)-11x(x-2)+5(x^2-3x-1)

2 min read Jun 16, 2024
(3x+4)(2x-5)-11x(x-2)+5(x^2-3x-1)

Simplifying the Expression: (3x+4)(2x-5)-11x(x-2)+5(x^2-3x-1)

This article will guide you through the process of simplifying the given algebraic expression: (3x+4)(2x-5)-11x(x-2)+5(x^2-3x-1).

Step 1: Expand the products

We'll start by expanding each of the products in the expression:

  • (3x+4)(2x-5) : Using the FOIL method (First, Outer, Inner, Last), we get: (3x * 2x) + (3x * -5) + (4 * 2x) + (4 * -5) = 6x² - 15x + 8x - 20 = 6x² - 7x - 20
  • -11x(x-2) : Distributing -11x gives us: -11x² + 22x
  • 5(x²-3x-1) : Distributing 5 gives us: 5x² - 15x - 5

Step 2: Combine like terms

Now, let's combine the terms that have the same variable and exponent:

(6x² - 7x - 20) + (-11x² + 22x) + (5x² - 15x - 5)

Combining x² terms: 6x² - 11x² + 5x² = 0x² Combining x terms: -7x + 22x - 15x = 0x Combining constant terms: -20 - 5 = -25

Step 3: The Simplified Expression

After combining all like terms, the simplified expression becomes:

0x² + 0x - 25 = -25

Therefore, the simplified form of the expression (3x+4)(2x-5)-11x(x-2)+5(x^2-3x-1) is -25. This means the expression is a constant value, regardless of the value of 'x'.

Related Post