Solving the Equation: (3x+4)(3x-4)-(2x+5)^2=(x-5)^2+(2x+1)^2-(x^2-2x)+(x-1)^2
This article will guide you through the steps to solve the given equation:
(3x+4)(3x-4)-(2x+5)^2=(x-5)^2+(2x+1)^2-(x^2-2x)+(x-1)^2
Simplifying the Equation
-
Expand the products:
- (3x+4)(3x-4): This is a difference of squares pattern: (a+b)(a-b) = a^2 - b^2. Therefore, (3x+4)(3x-4) = (3x)^2 - 4^2 = 9x^2 - 16.
- (2x+5)^2: This is a perfect square trinomial: (a+b)^2 = a^2 + 2ab + b^2. So, (2x+5)^2 = (2x)^2 + 2(2x)(5) + 5^2 = 4x^2 + 20x + 25.
- (x-5)^2: Similar to above, (x-5)^2 = x^2 - 10x + 25.
- (2x+1)^2: (2x+1)^2 = 4x^2 + 4x + 1.
- (x-1)^2: (x-1)^2 = x^2 - 2x + 1.
-
Substitute the expanded expressions into the equation:
9x^2 - 16 - (4x^2 + 20x + 25) = x^2 - 10x + 25 + 4x^2 + 4x + 1 - (x^2 - 2x) + x^2 - 2x + 1
-
Distribute the negative sign:
9x^2 - 16 - 4x^2 - 20x - 25 = x^2 - 10x + 25 + 4x^2 + 4x + 1 - x^2 + 2x + x^2 - 2x + 1
Combining Like Terms
-
Combine terms with the same variable and exponent:
(9x^2 - 4x^2 + x^2 - 4x^2 + x^2) + (-20x - 10x + 4x + 2x - 2x) + (-16 - 25 + 25 + 1 + 1 + 1) = 0
-
Simplify:
3x^2 - 26x - 14 = 0
Solving the Quadratic Equation
-
Factor the quadratic equation:
This equation is not easily factorable. Therefore, we can use the quadratic formula to find the solutions for x:
x = (-b ± √(b^2 - 4ac)) / 2a
where a = 3, b = -26, and c = -14.
-
Substitute the values into the quadratic formula and solve:
x = (26 ± √((-26)^2 - 4 * 3 * -14)) / (2 * 3) x = (26 ± √(676 + 168)) / 6 x = (26 ± √844) / 6 x = (26 ± 2√211) / 6
-
Simplify the solutions:
x = (13 ± √211) / 3
Conclusion
Therefore, the solutions to the equation (3x+4)(3x-4)-(2x+5)^2=(x-5)^2+(2x+1)^2-(x^2-2x)+(x-1)^2 are x = (13 + √211) / 3 and x = (13 - √211) / 3.