Long Division of Polynomials: (3x^3+9x^2+8x+4)/(x+2)
Long division of polynomials is a method used to divide a polynomial by another polynomial of a lower or equal degree. This process is similar to long division of numbers, but with variables and exponents.
Here's how to perform the long division of (3x^3+9x^2+8x+4) by (x+2):
1. Set up the division:
________
x+2 | 3x^3 + 9x^2 + 8x + 4
2. Divide the leading terms:
- Divide the leading term of the dividend (3x^3) by the leading term of the divisor (x): 3x^3 / x = 3x^2
- Write the result (3x^2) above the dividend.
3x^2
x+2 | 3x^3 + 9x^2 + 8x + 4
3. Multiply the divisor by the quotient term:
- Multiply the divisor (x+2) by the quotient term (3x^2): (x+2) * 3x^2 = 3x^3 + 6x^2
- Write the result below the dividend.
3x^2
x+2 | 3x^3 + 9x^2 + 8x + 4
3x^3 + 6x^2
4. Subtract:
- Subtract the product (3x^3 + 6x^2) from the dividend (3x^3 + 9x^2 + 8x + 4): (3x^3 + 9x^2 + 8x + 4) - (3x^3 + 6x^2) = 3x^2 + 8x + 4
3x^2
x+2 | 3x^3 + 9x^2 + 8x + 4
3x^3 + 6x^2
-----------
3x^2 + 8x + 4
5. Bring down the next term:
- Bring down the next term of the dividend (8x).
3x^2
x+2 | 3x^3 + 9x^2 + 8x + 4
3x^3 + 6x^2
-----------
3x^2 + 8x + 4
3x^2 + 6x
6. Repeat steps 2-5:
- Divide the new leading term (3x^2) by the divisor's leading term (x): 3x^2 / x = 3x
- Multiply the divisor (x+2) by the new quotient term (3x): (x+2) * 3x = 3x^2 + 6x
- Subtract the product (3x^2 + 6x) from the previous result (3x^2 + 8x + 4): (3x^2 + 8x + 4) - (3x^2 + 6x) = 2x + 4
- Bring down the next term (4): 2x + 4 + 4 = 2x + 8
3x^2 + 3x
x+2 | 3x^3 + 9x^2 + 8x + 4
3x^3 + 6x^2
-----------
3x^2 + 8x + 4
3x^2 + 6x
-----------
2x + 4
2x + 4
7. Final subtraction:
- Subtract the final product (2x + 4) from the previous result (2x + 8): (2x + 8) - (2x + 4) = 4
3x^2 + 3x
x+2 | 3x^3 + 9x^2 + 8x + 4
3x^3 + 6x^2
-----------
3x^2 + 8x + 4
3x^2 + 6x
-----------
2x + 4
2x + 4
-----
4
Result:
The quotient is 3x^2 + 3x and the remainder is 4.
Therefore, (3x^3+9x^2+8x+4)/(x+2) = 3x^2 + 3x + 4/(x+2).