Long Division of Polynomials: (3x^3 - 17x^2 + 15x - 25) / (x - 5)
Long division of polynomials is a process used to divide one polynomial by another. It is similar to the long division of numbers, but with polynomials. Let's break down the process of dividing (3x^3 - 17x^2 + 15x - 25) by (x - 5).
Steps:
-
Set up the division: Write the dividend (3x^3 - 17x^2 + 15x - 25) inside the division symbol and the divisor (x - 5) outside.
___________ x - 5 | 3x^3 - 17x^2 + 15x - 25
-
Divide the leading terms: Divide the leading term of the dividend (3x^3) by the leading term of the divisor (x). This gives us 3x^2. Write this result above the division symbol.
3x^2 _______ x - 5 | 3x^3 - 17x^2 + 15x - 25
-
Multiply the divisor: Multiply the divisor (x - 5) by the result we just obtained (3x^2). This gives us 3x^3 - 15x^2. Write this product below the dividend.
3x^2 _______ x - 5 | 3x^3 - 17x^2 + 15x - 25 3x^3 - 15x^2
-
Subtract: Subtract the product from the dividend. This gives us -2x^2 + 15x. Bring down the next term of the dividend (-25).
3x^2 _______ x - 5 | 3x^3 - 17x^2 + 15x - 25 3x^3 - 15x^2 ---------- -2x^2 + 15x - 25
-
Repeat steps 2-4: Repeat the process, dividing the new leading term (-2x^2) by the leading term of the divisor (x). This gives us -2x. Write this result above the division symbol.
3x^2 - 2x ______ x - 5 | 3x^3 - 17x^2 + 15x - 25 3x^3 - 15x^2 ---------- -2x^2 + 15x - 25 -2x^2 + 10x
-
Multiply and subtract: Multiply the divisor (x - 5) by -2x and subtract the product from the previous result. This gives us 5x - 25.
3x^2 - 2x ______ x - 5 | 3x^3 - 17x^2 + 15x - 25 3x^3 - 15x^2 ---------- -2x^2 + 15x - 25 -2x^2 + 10x ---------- 5x - 25
-
Repeat steps 2-4: Again, divide the new leading term (5x) by the leading term of the divisor (x). This gives us 5. Write this result above the division symbol.
3x^2 - 2x + 5 ____ x - 5 | 3x^3 - 17x^2 + 15x - 25 3x^3 - 15x^2 ---------- -2x^2 + 15x - 25 -2x^2 + 10x ---------- 5x - 25 5x - 25
-
Subtract: Subtract the product from the previous result. We get a remainder of 0.
3x^2 - 2x + 5 ____ x - 5 | 3x^3 - 17x^2 + 15x - 25 3x^3 - 15x^2 ---------- -2x^2 + 15x - 25 -2x^2 + 10x ---------- 5x - 25 5x - 25 ------ 0
Result:
Therefore, (3x^3 - 17x^2 + 15x - 25) / (x - 5) = 3x^2 - 2x + 5
Since the remainder is 0, we say that (x - 5) is a factor of (3x^3 - 17x^2 + 15x - 25).