Expanding the Expression (3x-4)(5-2x)(4x+1)
This article will guide you through the process of expanding the given expression: (3x-4)(5-2x)(4x+1).
Understanding the Process
Expanding an expression like this involves using the distributive property multiple times. Here's the breakdown:
- Multiply the first two factors: We will start by expanding (3x-4)(5-2x).
- Multiply the result by the third factor: We will then multiply the result from step 1 by (4x+1).
Expanding the First Two Factors
Let's expand (3x-4)(5-2x):
- Distribute 3x over (5-2x):
- 3x * 5 = 15x
- 3x * -2x = -6x²
- Distribute -4 over (5-2x):
- -4 * 5 = -20
- -4 * -2x = 8x
- Combine the terms:
- 15x - 6x² - 20 + 8x = -6x² + 23x - 20
Expanding the Entire Expression
Now we have: (-6x² + 23x - 20)(4x+1)
Let's repeat the distributive property:
- Distribute -6x² over (4x+1):
- -6x² * 4x = -24x³
- -6x² * 1 = -6x²
- Distribute 23x over (4x+1):
- 23x * 4x = 92x²
- 23x * 1 = 23x
- Distribute -20 over (4x+1):
- -20 * 4x = -80x
- -20 * 1 = -20
- Combine the terms:
- -24x³ - 6x² + 92x² + 23x - 80x - 20 = -24x³ + 86x² - 57x - 20
Final Result
Therefore, the expanded form of the expression (3x-4)(5-2x)(4x+1) is -24x³ + 86x² - 57x - 20.