Expanding the Expression (3x - 5y + 4)(9x^2 + 25y^2 + 15xy - 20y + 12x + 16)
This expression represents the product of two trinomials. To expand it, we can use the distributive property (also known as FOIL for binomials). Here's how:
Step 1: Distribute the first term of the first trinomial
- (3x) * (9x^2 + 25y^2 + 15xy - 20y + 12x + 16)
- = 27x^3 + 75xy^2 + 45x^2y - 60xy + 36x^2 + 48x
Step 2: Distribute the second term of the first trinomial
- (-5y) * (9x^2 + 25y^2 + 15xy - 20y + 12x + 16)
- = -45x^2y - 125y^3 - 75xy^2 + 100y^2 - 60xy - 80y
Step 3: Distribute the third term of the first trinomial
- (4) * (9x^2 + 25y^2 + 15xy - 20y + 12x + 16)
- = 36x^2 + 100y^2 + 60xy - 80y + 48x + 64
Step 4: Combine like terms
Now, we add all the terms we've obtained:
- 27x^3 + 75xy^2 + 45x^2y - 60xy + 36x^2 + 48x
- 45x^2y - 125y^3 - 75xy^2 + 100y^2 - 60xy - 80y
- 36x^2 + 100y^2 + 60xy - 80y + 48x + 64
Simplifying the expression by combining like terms:
- 27x^3 - 125y^3 + 72x^2 + 200y^2 - 60xy - 160y + 96x + 64
Therefore, the expanded form of the expression is: 27x^3 - 125y^3 + 72x^2 + 200y^2 - 60xy - 160y + 96x + 64