Simplifying the Expression: (3x² + 5x - 7)(x - 1) - (x² - 2x + 3)(x + 4)
This article aims to simplify the given algebraic expression: (3x² + 5x - 7)(x - 1) - (x² - 2x + 3)(x + 4)
To simplify this expression, we will follow these steps:
-
Expand each product using the distributive property (or FOIL method):
- (3x² + 5x - 7)(x - 1) = 3x³ - 3x² + 5x² - 5x - 7x + 7
- (x² - 2x + 3)(x + 4) = x³ + 4x² - 2x² - 8x + 3x + 12
-
Combine like terms in each expansion:
- (3x² + 5x - 7)(x - 1) = 3x³ + 2x² - 12x + 7
- (x² - 2x + 3)(x + 4) = x³ + 2x² - 5x + 12
-
Substitute the expanded products back into the original expression:
- (3x³ + 2x² - 12x + 7) - (x³ + 2x² - 5x + 12)
-
Distribute the negative sign:
- 3x³ + 2x² - 12x + 7 - x³ - 2x² + 5x - 12
-
Combine like terms again:
- 2x³ - 7x - 5
Therefore, the simplified form of the expression (3x² + 5x - 7)(x - 1) - (x² - 2x + 3)(x + 4) is 2x³ - 7x - 5.