(4a^6-5a^4+3a^2-a)/(2a+1)

5 min read Jun 16, 2024
(4a^6-5a^4+3a^2-a)/(2a+1)

Polynomial Long Division: (4a^6-5a^4+3a^2-a)/(2a+1)

In this article, we'll walk through the process of dividing the polynomial 4a^6 - 5a^4 + 3a^2 - a by the binomial 2a + 1 using polynomial long division.

Setting up the Division

  1. Arrange the polynomials: Write the dividend (4a^6 - 5a^4 + 3a^2 - a) and the divisor (2a + 1) in a long division format. Ensure that both polynomials are arranged in descending order of their exponents.

         _________________________
    2a+1 | 4a^6 - 5a^4 + 3a^2 - a 
    
  2. Fill in missing terms: If there are any missing terms in the dividend (terms with exponents that are not present), we need to add them with a coefficient of 0. In this case, there are no missing terms.

Performing the Division

  1. Divide the leading terms: Divide the leading term of the dividend (4a^6) by the leading term of the divisor (2a). This gives us 2a^5.

         2a^5 ______________________
    2a+1 | 4a^6 - 5a^4 + 3a^2 - a 
    
  2. Multiply the quotient by the divisor: Multiply 2a^5 by (2a + 1), which gives us 4a^6 + 2a^5.

         2a^5 ______________________
    2a+1 | 4a^6 - 5a^4 + 3a^2 - a 
           -(4a^6 + 2a^5)
    
  3. Subtract: Subtract the result (4a^6 + 2a^5) from the dividend.

         2a^5 ______________________
    2a+1 | 4a^6 - 5a^4 + 3a^2 - a 
           -(4a^6 + 2a^5)
           ------------------
                 -2a^5 - 5a^4 
    
  4. Bring down the next term: Bring down the next term of the dividend (-5a^4).

         2a^5 ______________________
    2a+1 | 4a^6 - 5a^4 + 3a^2 - a 
           -(4a^6 + 2a^5)
           ------------------
                 -2a^5 - 5a^4 + 3a^2
    
  5. Repeat the process: Repeat steps 1-4 with the new dividend (-2a^5 - 5a^4 + 3a^2). Divide the leading term (-2a^5) by the leading term of the divisor (2a) to get -a^4. Multiply -a^4 by (2a + 1) to get -2a^5 - a^4. Subtract this from the current dividend.

         2a^5 - a^4 _________________
    2a+1 | 4a^6 - 5a^4 + 3a^2 - a 
           -(4a^6 + 2a^5)
           ------------------
                 -2a^5 - 5a^4 + 3a^2
                 -(-2a^5 - a^4)
                 -----------------
                        -4a^4 + 3a^2 
    
  6. Continue repeating: Continue this process until the degree of the remaining dividend is less than the degree of the divisor.

         2a^5 - a^4 + 2a^3 - a^2 + 2a - 1 
    2a+1 | 4a^6 - 5a^4 + 3a^2 - a 
           -(4a^6 + 2a^5)
           ------------------
                 -2a^5 - 5a^4 + 3a^2
                 -(-2a^5 - a^4)
                 -----------------
                        -4a^4 + 3a^2 
                        -(-4a^4 - 2a^3)
                        -----------------
                              2a^3 + 3a^2 - a 
                              -(2a^3 + a^2)
                              -----------------
                                    2a^2 - a
                                    -(2a^2 + a)
                                    -----------------
                                         -2a
                                         -(-2a - 1)
                                         -----------------
                                               1 
    

Result

The result of the division is: 2a^5 - a^4 + 2a^3 - a^2 + 2a - 1 with a remainder of 1.

Therefore, we can express the original expression as:

(4a^6 - 5a^4 + 3a^2 - a)/(2a + 1) = 2a^5 - a^4 + 2a^3 - a^2 + 2a - 1 + 1/(2a + 1)

Related Post


Featured Posts