Polynomial Long Division: (4a^6-5a^4+3a^2-a)/(2a+1)
In this article, we'll walk through the process of dividing the polynomial 4a^6 - 5a^4 + 3a^2 - a by the binomial 2a + 1 using polynomial long division.
Setting up the Division
-
Arrange the polynomials: Write the dividend (4a^6 - 5a^4 + 3a^2 - a) and the divisor (2a + 1) in a long division format. Ensure that both polynomials are arranged in descending order of their exponents.
_________________________ 2a+1 | 4a^6 - 5a^4 + 3a^2 - a
-
Fill in missing terms: If there are any missing terms in the dividend (terms with exponents that are not present), we need to add them with a coefficient of 0. In this case, there are no missing terms.
Performing the Division
-
Divide the leading terms: Divide the leading term of the dividend (4a^6) by the leading term of the divisor (2a). This gives us 2a^5.
2a^5 ______________________ 2a+1 | 4a^6 - 5a^4 + 3a^2 - a
-
Multiply the quotient by the divisor: Multiply 2a^5 by (2a + 1), which gives us 4a^6 + 2a^5.
2a^5 ______________________ 2a+1 | 4a^6 - 5a^4 + 3a^2 - a -(4a^6 + 2a^5)
-
Subtract: Subtract the result (4a^6 + 2a^5) from the dividend.
2a^5 ______________________ 2a+1 | 4a^6 - 5a^4 + 3a^2 - a -(4a^6 + 2a^5) ------------------ -2a^5 - 5a^4
-
Bring down the next term: Bring down the next term of the dividend (-5a^4).
2a^5 ______________________ 2a+1 | 4a^6 - 5a^4 + 3a^2 - a -(4a^6 + 2a^5) ------------------ -2a^5 - 5a^4 + 3a^2
-
Repeat the process: Repeat steps 1-4 with the new dividend (-2a^5 - 5a^4 + 3a^2). Divide the leading term (-2a^5) by the leading term of the divisor (2a) to get -a^4. Multiply -a^4 by (2a + 1) to get -2a^5 - a^4. Subtract this from the current dividend.
2a^5 - a^4 _________________ 2a+1 | 4a^6 - 5a^4 + 3a^2 - a -(4a^6 + 2a^5) ------------------ -2a^5 - 5a^4 + 3a^2 -(-2a^5 - a^4) ----------------- -4a^4 + 3a^2
-
Continue repeating: Continue this process until the degree of the remaining dividend is less than the degree of the divisor.
2a^5 - a^4 + 2a^3 - a^2 + 2a - 1 2a+1 | 4a^6 - 5a^4 + 3a^2 - a -(4a^6 + 2a^5) ------------------ -2a^5 - 5a^4 + 3a^2 -(-2a^5 - a^4) ----------------- -4a^4 + 3a^2 -(-4a^4 - 2a^3) ----------------- 2a^3 + 3a^2 - a -(2a^3 + a^2) ----------------- 2a^2 - a -(2a^2 + a) ----------------- -2a -(-2a - 1) ----------------- 1
Result
The result of the division is: 2a^5 - a^4 + 2a^3 - a^2 + 2a - 1 with a remainder of 1.
Therefore, we can express the original expression as:
(4a^6 - 5a^4 + 3a^2 - a)/(2a + 1) = 2a^5 - a^4 + 2a^3 - a^2 + 2a - 1 + 1/(2a + 1)