Expanding and Simplifying (4m + 5n)² + (5m + 4n)²
This expression involves squaring binomials and then adding the results. Let's break down the steps to simplify it:
1. Expanding the Squares
We use the FOIL method (First, Outer, Inner, Last) to expand the squares:
-
(4m + 5n)² = (4m + 5n)(4m + 5n)
- First: 4m * 4m = 16m²
- Outer: 4m * 5n = 20mn
- Inner: 5n * 4m = 20mn
- Last: 5n * 5n = 25n²
- Combine like terms: 16m² + 20mn + 20mn + 25n² = 16m² + 40mn + 25n²
-
(5m + 4n)² = (5m + 4n)(5m + 4n)
- First: 5m * 5m = 25m²
- Outer: 5m * 4n = 20mn
- Inner: 4n * 5m = 20mn
- Last: 4n * 4n = 16n²
- Combine like terms: 25m² + 20mn + 20mn + 16n² = 25m² + 40mn + 16n²
2. Combining the Results
Now we add the expanded expressions:
(16m² + 40mn + 25n²) + (25m² + 40mn + 16n²)
3. Simplifying
Combine like terms:
16m² + 25m² + 40mn + 40mn + 25n² + 16n² = 41m² + 80mn + 41n²
Final Result
Therefore, the simplified form of (4m + 5n)² + (5m + 4n)² is 41m² + 80mn + 41n².