Expanding and Simplifying the Expression (4m+5n)2+(5m+4n)2+(4m+5n)(4m-5n)
This article will guide you through the process of expanding and simplifying the given algebraic expression: (4m+5n)2+(5m+4n)2+(4m+5n)(4m-5n).
Understanding the Expression
The expression involves:
- Squaring binomials: (4m+5n)2 and (5m+4n)2
- Multiplying binomials: (4m+5n)(4m-5n)
Expanding the Expression
1. Expanding the squares:
-
(4m+5n)2 = (4m+5n)(4m+5n)
- Using the FOIL method:
- First: (4m)(4m) = 16m²
- Outer: (4m)(5n) = 20mn
- Inner: (5n)(4m) = 20mn
- Last: (5n)(5n) = 25n²
- Combine like terms: 16m² + 40mn + 25n²
- Using the FOIL method:
-
(5m+4n)2 = (5m+4n)(5m+4n)
- Using the FOIL method:
- First: (5m)(5m) = 25m²
- Outer: (5m)(4n) = 20mn
- Inner: (4n)(5m) = 20mn
- Last: (4n)(4n) = 16n²
- Combine like terms: 25m² + 40mn + 16n²
- Using the FOIL method:
2. Expanding the product:
- (4m+5n)(4m-5n)
- Using the difference of squares pattern (a+b)(a-b) = a² - b²:
- (4m)² - (5n)² = 16m² - 25n²
- Using the difference of squares pattern (a+b)(a-b) = a² - b²:
Combining the Expanded Terms
Now, we combine the expanded terms from each part:
(16m² + 40mn + 25n²) + (25m² + 40mn + 16n²) + (16m² - 25n²)
Simplifying the Expression
Finally, we combine like terms to simplify the expression:
16m² + 25m² + 16m² + 40mn + 40mn + 25n² + 16n² - 25n²
= 57m² + 80mn + 16n²
Conclusion
Therefore, the simplified form of the expression (4m+5n)2+(5m+4n)2+(4m+5n)(4m-5n) is 57m² + 80mn + 16n².