(4x^3-3x^2+5x+6)/(x+6)

5 min read Jun 16, 2024
(4x^3-3x^2+5x+6)/(x+6)

Dividing Polynomials: (4x^3 - 3x^2 + 5x + 6) / (x + 6)

This article will walk through the process of dividing the polynomial 4x^3 - 3x^2 + 5x + 6 by the binomial x + 6. We will use the long division method to achieve this.

Long Division Method

  1. Set up the division: Write the dividend (4x^3 - 3x^2 + 5x + 6) inside the division symbol and the divisor (x + 6) outside.

         _________
    x + 6 | 4x^3 - 3x^2 + 5x + 6
    
  2. Divide the leading terms: Divide the leading term of the dividend (4x^3) by the leading term of the divisor (x). This gives us 4x^2. Write this term above the division symbol.

         4x^2 ______
    x + 6 | 4x^3 - 3x^2 + 5x + 6
    
  3. Multiply the divisor: Multiply the quotient term (4x^2) by the entire divisor (x + 6). This results in 4x^3 + 24x^2.

         4x^2 ______
    x + 6 | 4x^3 - 3x^2 + 5x + 6
            4x^3 + 24x^2
    
  4. Subtract: Subtract the result from the dividend. Be careful with the signs!

         4x^2 ______
    x + 6 | 4x^3 - 3x^2 + 5x + 6
            4x^3 + 24x^2
            -----------
                   -27x^2 + 5x 
    
  5. Bring down the next term: Bring down the next term from the dividend (5x).

         4x^2 ______
    x + 6 | 4x^3 - 3x^2 + 5x + 6
            4x^3 + 24x^2
            -----------
                   -27x^2 + 5x + 6
    
  6. Repeat steps 2-5: Now, divide the leading term of the new dividend (-27x^2) by the leading term of the divisor (x). This gives us -27x. Write this term above the division symbol.

         4x^2 - 27x ______
    x + 6 | 4x^3 - 3x^2 + 5x + 6
            4x^3 + 24x^2
            -----------
                   -27x^2 + 5x + 6
                   -27x^2 - 162x
    

    Multiply (-27x) by the divisor (x + 6), subtract, and bring down the next term (6).

         4x^2 - 27x ______
    x + 6 | 4x^3 - 3x^2 + 5x + 6
            4x^3 + 24x^2
            -----------
                   -27x^2 + 5x + 6
                   -27x^2 - 162x
                   -----------
                           167x + 6 
    
  7. Continue repeating steps 2-5: Divide 167x by x to get 167.

         4x^2 - 27x + 167 _____
    x + 6 | 4x^3 - 3x^2 + 5x + 6
            4x^3 + 24x^2
            -----------
                   -27x^2 + 5x + 6
                   -27x^2 - 162x
                   -----------
                           167x + 6 
                           167x + 1002
    

    Multiply 167 by (x + 6), subtract, and we are left with the remainder.

         4x^2 - 27x + 167 _____
    x + 6 | 4x^3 - 3x^2 + 5x + 6
            4x^3 + 24x^2
            -----------
                   -27x^2 + 5x + 6
                   -27x^2 - 162x
                   -----------
                           167x + 6 
                           167x + 1002
                           -----------
                                  -996
    
  8. The result: We can now write the result of the division as:

    4x^3 - 3x^2 + 5x + 6 = (x + 6)(4x^2 - 27x + 167) - 996

    Or, in the form of quotient and remainder:

    (4x^3 - 3x^2 + 5x + 6) / (x + 6) = 4x^2 - 27x + 167 - 996/(x + 6)

Conclusion

Using the long division method, we successfully divided the polynomial 4x^3 - 3x^2 + 5x + 6 by the binomial x + 6. The result is a quotient of 4x^2 - 27x + 167 and a remainder of -996.

Related Post