Long Division of Polynomials: (4x³ - 7x² - 11x + 5) / (4x + 5)
Long division of polynomials is a process used to divide a polynomial by another polynomial of a lower degree. This process is similar to the long division of numbers.
Here's how to divide (4x³ - 7x² - 11x + 5) by (4x + 5):
Step 1: Set up the division.
Write the dividend (4x³ - 7x² - 11x + 5) inside the division symbol and the divisor (4x + 5) outside the symbol.
____________
4x + 5 | 4x³ - 7x² - 11x + 5
Step 2: Divide the leading terms.
Divide the leading term of the dividend (4x³) by the leading term of the divisor (4x). This gives us x². Write x² above the dividend.
x² _________
4x + 5 | 4x³ - 7x² - 11x + 5
Step 3: Multiply the quotient by the divisor.
Multiply the quotient (x²) by the divisor (4x + 5). This gives us 4x³ + 5x². Write this below the dividend.
x² _________
4x + 5 | 4x³ - 7x² - 11x + 5
4x³ + 5x²
Step 4: Subtract.
Subtract the product from the dividend. This gives us -12x². Bring down the next term (-11x).
x² _________
4x + 5 | 4x³ - 7x² - 11x + 5
4x³ + 5x²
---------
-12x² - 11x
Step 5: Repeat the process.
Repeat steps 2-4 with the new dividend (-12x² - 11x).
- Divide the leading term of the new dividend (-12x²) by the leading term of the divisor (4x). This gives us -3x. Write -3x above the dividend.
x² - 3x ______
4x + 5 | 4x³ - 7x² - 11x + 5
4x³ + 5x²
---------
-12x² - 11x
- Multiply the new quotient (-3x) by the divisor (4x + 5). This gives us -12x² - 15x. Write this below the new dividend.
x² - 3x ______
4x + 5 | 4x³ - 7x² - 11x + 5
4x³ + 5x²
---------
-12x² - 11x
-12x² - 15x
- Subtract the product from the new dividend. This gives us 4x. Bring down the next term (+5).
x² - 3x ______
4x + 5 | 4x³ - 7x² - 11x + 5
4x³ + 5x²
---------
-12x² - 11x
-12x² - 15x
---------
4x + 5
Step 6: Repeat again.
Repeat steps 2-4 with the new dividend (4x + 5).
- Divide the leading term of the new dividend (4x) by the leading term of the divisor (4x). This gives us 1. Write 1 above the dividend.
x² - 3x + 1 __
4x + 5 | 4x³ - 7x² - 11x + 5
4x³ + 5x²
---------
-12x² - 11x
-12x² - 15x
---------
4x + 5
- Multiply the new quotient (1) by the divisor (4x + 5). This gives us 4x + 5. Write this below the new dividend.
x² - 3x + 1 __
4x + 5 | 4x³ - 7x² - 11x + 5
4x³ + 5x²
---------
-12x² - 11x
-12x² - 15x
---------
4x + 5
4x + 5
- Subtract the product from the new dividend. This gives us 0.
x² - 3x + 1 __
4x + 5 | 4x³ - 7x² - 11x + 5
4x³ + 5x²
---------
-12x² - 11x
-12x² - 15x
---------
4x + 5
4x + 5
---------
0
Therefore, the result of dividing (4x³ - 7x² - 11x + 5) by (4x + 5) is x² - 3x + 1.
This can also be written as:
(4x³ - 7x² - 11x + 5) / (4x + 5) = x² - 3x + 1