(4x^4-2x^3+x^2-5x+8)/(x^2-2x-1)

6 min read Jun 16, 2024
(4x^4-2x^3+x^2-5x+8)/(x^2-2x-1)

Polynomial Long Division: (4x^4-2x^3+x^2-5x+8)/(x^2-2x-1)

This article will walk through the process of performing polynomial long division on the expression (4x^4-2x^3+x^2-5x+8)/(x^2-2x-1).

Understanding Polynomial Long Division

Polynomial long division is a method for dividing polynomials, similar to the long division you may have learned for numbers. The goal is to find a quotient and a remainder.

Steps for Polynomial Long Division

  1. Set up the division: Write the dividend (4x^4-2x^3+x^2-5x+8) inside the division symbol and the divisor (x^2-2x-1) outside.

         ____________
    x^2-2x-1 | 4x^4 - 2x^3 + x^2 - 5x + 8 
    
  2. Divide the leading terms: Divide the leading term of the dividend (4x^4) by the leading term of the divisor (x^2). This gives us 4x^2, which we write above the division symbol.

         4x^2       
    x^2-2x-1 | 4x^4 - 2x^3 + x^2 - 5x + 8 
    
  3. Multiply the divisor by the quotient term: Multiply (x^2-2x-1) by 4x^2, which gives us 4x^4 - 8x^3 - 4x^2. Write this result below the dividend.

         4x^2       
    x^2-2x-1 | 4x^4 - 2x^3 + x^2 - 5x + 8 
              4x^4 - 8x^3 - 4x^2 
    
  4. Subtract: Subtract the result from the dividend. This gives us 6x^3 + 5x^2 - 5x.

         4x^2       
    x^2-2x-1 | 4x^4 - 2x^3 + x^2 - 5x + 8 
              4x^4 - 8x^3 - 4x^2 
              ------------------
                   6x^3 + 5x^2 - 5x
    
  5. Bring down the next term: Bring down the next term from the dividend (-5x).

         4x^2       
    x^2-2x-1 | 4x^4 - 2x^3 + x^2 - 5x + 8 
              4x^4 - 8x^3 - 4x^2 
              ------------------
                   6x^3 + 5x^2 - 5x + 8
    
  6. Repeat steps 2-5: Repeat the process, now dividing the leading term of the new dividend (6x^3) by the leading term of the divisor (x^2). This gives us 6x.

         4x^2 + 6x    
    x^2-2x-1 | 4x^4 - 2x^3 + x^2 - 5x + 8 
              4x^4 - 8x^3 - 4x^2 
              ------------------
                   6x^3 + 5x^2 - 5x + 8
                   6x^3 - 12x^2 - 6x 
    

    Continue multiplying and subtracting. Remember to bring down the next term from the dividend.

         4x^2 + 6x     
    x^2-2x-1 | 4x^4 - 2x^3 + x^2 - 5x + 8 
              4x^4 - 8x^3 - 4x^2 
              ------------------
                   6x^3 + 5x^2 - 5x + 8
                   6x^3 - 12x^2 - 6x 
                   ------------------
                          17x^2 + x + 8
    
  7. Repeat the process again: Divide the leading term of the new dividend (17x^2) by the leading term of the divisor (x^2). This gives us 17.

         4x^2 + 6x + 17
    x^2-2x-1 | 4x^4 - 2x^3 + x^2 - 5x + 8 
              4x^4 - 8x^3 - 4x^2 
              ------------------
                   6x^3 + 5x^2 - 5x + 8
                   6x^3 - 12x^2 - 6x 
                   ------------------
                          17x^2 + x + 8
                          17x^2 - 34x - 17
    
  8. Subtract and bring down: Subtract the result and bring down the next term (8). This leaves us with a final remainder of 35x + 25.

         4x^2 + 6x + 17
    x^2-2x-1 | 4x^4 - 2x^3 + x^2 - 5x + 8 
              4x^4 - 8x^3 - 4x^2 
              ------------------
                   6x^3 + 5x^2 - 5x + 8
                   6x^3 - 12x^2 - 6x 
                   ------------------
                          17x^2 + x + 8
                          17x^2 - 34x - 17
                          -----------------
                                 35x + 25
    

Final Result

The quotient of the division is 4x^2 + 6x + 17, and the remainder is 35x + 25.

Therefore, we can write the original expression as:

(4x^4 - 2x^3 + x^2 - 5x + 8) / (x^2 - 2x - 1) = 4x^2 + 6x + 17 + (35x + 25) / (x^2 - 2x - 1)

Related Post