Polynomial Long Division: (4x^4-2x^3+x^2-5x+8)/(x^2-2x-1)
This article will walk through the process of performing polynomial long division on the expression (4x^4-2x^3+x^2-5x+8)/(x^2-2x-1).
Understanding Polynomial Long Division
Polynomial long division is a method for dividing polynomials, similar to the long division you may have learned for numbers. The goal is to find a quotient and a remainder.
Steps for Polynomial Long Division
-
Set up the division: Write the dividend (4x^4-2x^3+x^2-5x+8) inside the division symbol and the divisor (x^2-2x-1) outside.
____________ x^2-2x-1 | 4x^4 - 2x^3 + x^2 - 5x + 8
-
Divide the leading terms: Divide the leading term of the dividend (4x^4) by the leading term of the divisor (x^2). This gives us 4x^2, which we write above the division symbol.
4x^2 x^2-2x-1 | 4x^4 - 2x^3 + x^2 - 5x + 8
-
Multiply the divisor by the quotient term: Multiply (x^2-2x-1) by 4x^2, which gives us 4x^4 - 8x^3 - 4x^2. Write this result below the dividend.
4x^2 x^2-2x-1 | 4x^4 - 2x^3 + x^2 - 5x + 8 4x^4 - 8x^3 - 4x^2
-
Subtract: Subtract the result from the dividend. This gives us 6x^3 + 5x^2 - 5x.
4x^2 x^2-2x-1 | 4x^4 - 2x^3 + x^2 - 5x + 8 4x^4 - 8x^3 - 4x^2 ------------------ 6x^3 + 5x^2 - 5x
-
Bring down the next term: Bring down the next term from the dividend (-5x).
4x^2 x^2-2x-1 | 4x^4 - 2x^3 + x^2 - 5x + 8 4x^4 - 8x^3 - 4x^2 ------------------ 6x^3 + 5x^2 - 5x + 8
-
Repeat steps 2-5: Repeat the process, now dividing the leading term of the new dividend (6x^3) by the leading term of the divisor (x^2). This gives us 6x.
4x^2 + 6x x^2-2x-1 | 4x^4 - 2x^3 + x^2 - 5x + 8 4x^4 - 8x^3 - 4x^2 ------------------ 6x^3 + 5x^2 - 5x + 8 6x^3 - 12x^2 - 6x
Continue multiplying and subtracting. Remember to bring down the next term from the dividend.
4x^2 + 6x x^2-2x-1 | 4x^4 - 2x^3 + x^2 - 5x + 8 4x^4 - 8x^3 - 4x^2 ------------------ 6x^3 + 5x^2 - 5x + 8 6x^3 - 12x^2 - 6x ------------------ 17x^2 + x + 8
-
Repeat the process again: Divide the leading term of the new dividend (17x^2) by the leading term of the divisor (x^2). This gives us 17.
4x^2 + 6x + 17 x^2-2x-1 | 4x^4 - 2x^3 + x^2 - 5x + 8 4x^4 - 8x^3 - 4x^2 ------------------ 6x^3 + 5x^2 - 5x + 8 6x^3 - 12x^2 - 6x ------------------ 17x^2 + x + 8 17x^2 - 34x - 17
-
Subtract and bring down: Subtract the result and bring down the next term (8). This leaves us with a final remainder of 35x + 25.
4x^2 + 6x + 17 x^2-2x-1 | 4x^4 - 2x^3 + x^2 - 5x + 8 4x^4 - 8x^3 - 4x^2 ------------------ 6x^3 + 5x^2 - 5x + 8 6x^3 - 12x^2 - 6x ------------------ 17x^2 + x + 8 17x^2 - 34x - 17 ----------------- 35x + 25
Final Result
The quotient of the division is 4x^2 + 6x + 17, and the remainder is 35x + 25.
Therefore, we can write the original expression as:
(4x^4 - 2x^3 + x^2 - 5x + 8) / (x^2 - 2x - 1) = 4x^2 + 6x + 17 + (35x + 25) / (x^2 - 2x - 1)