(4x2 + 8x + 15) + (x2 − X − 27) − (x + 5)(x − 7)

2 min read Jun 16, 2024
(4x2 + 8x + 15) + (x2 − X − 27) − (x + 5)(x − 7)

Simplifying the Expression: (4x² + 8x + 15) + (x² − x − 27) − (x + 5)(x − 7)

This problem involves combining multiple algebraic expressions. To simplify it, we'll follow these steps:

1. Expand the Product

  • First, we need to expand the product (x + 5)(x − 7) using the FOIL method (First, Outer, Inner, Last):

    • First: x * x = x²
    • Outer: x * -7 = -7x
    • Inner: 5 * x = 5x
    • Last: 5 * -7 = -35
  • Combining these terms gives us: x² - 7x + 5x - 35 = x² - 2x - 35

2. Combine Like Terms

  • Now, we can rewrite the entire expression: (4x² + 8x + 15) + (x² − x − 27) − (x² - 2x - 35)

  • Combining like terms (terms with the same variable and exponent):

    • x² terms: 4x² + x² - x² = 4x²
    • x terms: 8x - x + 2x = 9x
    • Constant terms: 15 - 27 + 35 = 23

3. Simplified Expression

  • Combining all the terms, we get the simplified expression: 4x² + 9x + 23

Therefore, the simplified form of the given expression (4x² + 8x + 15) + (x² − x − 27) − (x + 5)(x − 7) is 4x² + 9x + 23.

Related Post


Featured Posts