Simplifying the Expression: (4x⁴ + 5x - 4) ÷ (x² - 3x - 2)
This article will guide you through the process of simplifying the expression (4x⁴ + 5x - 4) ÷ (x² - 3x - 2).
Understanding the Problem
We are dealing with a division problem involving polynomials. To simplify this, we'll utilize the long division method.
Long Division Steps
-
Set up the problem: Arrange the polynomials in descending order of their exponents, filling in any missing terms with coefficients of 0.
____________ x² - 3x - 2 | 4x⁴ + 0x³ + 0x² + 5x - 4
-
Divide the leading terms: Divide the leading term of the dividend (4x⁴) by the leading term of the divisor (x²), which gives 4x². Write this term above the line in the quotient.
4x² ________ x² - 3x - 2 | 4x⁴ + 0x³ + 0x² + 5x - 4
-
Multiply the divisor by the quotient term: Multiply (x² - 3x - 2) by 4x².
4x² ________ x² - 3x - 2 | 4x⁴ + 0x³ + 0x² + 5x - 4 4x⁴ - 12x³ - 8x²
-
Subtract: Subtract the result from the dividend.
4x² ________ x² - 3x - 2 | 4x⁴ + 0x³ + 0x² + 5x - 4 4x⁴ - 12x³ - 8x² ----------------- 12x³ + 8x² + 5x
-
Bring down the next term: Bring down the next term of the dividend (+ 5x).
4x² ________ x² - 3x - 2 | 4x⁴ + 0x³ + 0x² + 5x - 4 4x⁴ - 12x³ - 8x² ----------------- 12x³ + 8x² + 5x
-
Repeat steps 2-5: Divide the new leading term (12x³) by the divisor's leading term (x²), which gives 12x. Write this in the quotient, multiply, subtract, and bring down the next term.
4x² + 12x _______ x² - 3x - 2 | 4x⁴ + 0x³ + 0x² + 5x - 4 4x⁴ - 12x³ - 8x² ----------------- 12x³ + 8x² + 5x 12x³ - 36x² - 24x ----------------- 44x² + 29x
-
Continue the process: Repeat steps 2-5 until the degree of the remaining polynomial is less than the degree of the divisor.
4x² + 12x + 44 _______ x² - 3x - 2 | 4x⁴ + 0x³ + 0x² + 5x - 4 4x⁴ - 12x³ - 8x² ----------------- 12x³ + 8x² + 5x 12x³ - 36x² - 24x ----------------- 44x² + 29x - 4 44x² - 132x - 88 ----------------- 161x + 84
Final Result
The simplified form of the expression is:
4x² + 12x + 44 + (161x + 84) / (x² - 3x - 2)
This represents the quotient (4x² + 12x + 44) and the remainder (161x + 84) over the original divisor.