Simplifying Expressions with Exponents
This article will guide you through simplifying the expression: (5/x)^-2 x (25/3x)^7 x (5/2x)^-4. We'll break down the process step-by-step, utilizing the rules of exponents.
Understanding the Rules of Exponents
Before diving into the simplification, let's refresh our memory on some key exponent rules:
- Negative Exponents: a^-n = 1/a^n
- Fractional Exponents: a^(m/n) = (a^m)^(1/n) = (a^(1/n))^m
- Product of Powers: a^m * a^n = a^(m+n)
- Power of a Power: (a^m)^n = a^(m*n)
- Power of a Quotient: (a/b)^n = a^n / b^n
Step-by-Step Simplification
-
Dealing with Negative Exponents:
- (5/x)^-2 = (x/5)^2
- (5/2x)^-4 = (2x/5)^4
-
Simplifying using Power of a Quotient:
- (x/5)^2 = x^2 / 5^2 = x^2 / 25
- (2x/5)^4 = (2x)^4 / 5^4 = 16x^4 / 625
-
Combining terms:
- (x^2 / 25) x (25/3x)^7 x (16x^4 / 625)
-
Applying Power of a Power:
- (25/3x)^7 = 25^7 / (3x)^7 = 78125 / 2187x^7
-
Combining terms again:
- (x^2 / 25) x (78125 / 2187x^7) x (16x^4 / 625)
-
Multiplying fractions:
- (x^2 * 78125 * 16x^4) / (25 * 2187x^7 * 625)
-
Simplifying by canceling common factors:
-
(16 * 78125 * x^6) / (25 * 2187 * 625 * x^7)
-
1024 / 3375x
-
Final Result
The simplified expression is 1024 / 3375x.