(6x^5-2x^3+4x^2-3x+1)/(x-2)

4 min read Jun 16, 2024
(6x^5-2x^3+4x^2-3x+1)/(x-2)

Dividing Polynomials: (6x^5-2x^3+4x^2-3x+1)/(x-2)

This article explores the process of dividing the polynomial 6x^5-2x^3+4x^2-3x+1 by the binomial x-2. We will utilize polynomial long division to find the quotient and remainder.

Polynomial Long Division

  1. Set up the division: Write the dividend (6x^5-2x^3+4x^2-3x+1) inside the division symbol and the divisor (x-2) outside. Notice that we need to include placeholders for missing terms in the dividend (e.g., 0x^4 for the missing x^4 term).
             ___________
    x - 2 | 6x^5 + 0x^4 - 2x^3 + 4x^2 - 3x + 1
  1. Divide the leading terms: Divide the leading term of the dividend (6x^5) by the leading term of the divisor (x). This gives us 6x^4, which is the first term of the quotient.
             6x^4 _______
    x - 2 | 6x^5 + 0x^4 - 2x^3 + 4x^2 - 3x + 1
  1. Multiply the quotient term by the divisor: Multiply 6x^4 by (x-2), which gives us 6x^5 - 12x^4.
             6x^4 _______
    x - 2 | 6x^5 + 0x^4 - 2x^3 + 4x^2 - 3x + 1
             6x^5 - 12x^4
  1. Subtract: Subtract the result from the dividend. Notice the subtraction changes the signs of the terms.
             6x^4 _______
    x - 2 | 6x^5 + 0x^4 - 2x^3 + 4x^2 - 3x + 1
             6x^5 - 12x^4
             ----------------
                     12x^4 - 2x^3
  1. Bring down the next term: Bring down the next term from the dividend (-2x^3).
             6x^4 _______
    x - 2 | 6x^5 + 0x^4 - 2x^3 + 4x^2 - 3x + 1
             6x^5 - 12x^4
             ----------------
                     12x^4 - 2x^3 + 4x^2
  1. Repeat steps 2-5: Repeat the process of dividing, multiplying, and subtracting until there are no more terms in the dividend to bring down.
             6x^4 + 12x^3 + 22x^2 + 48x + 93 
    x - 2 | 6x^5 + 0x^4 - 2x^3 + 4x^2 - 3x + 1
             6x^5 - 12x^4
             ----------------
                     12x^4 - 2x^3 + 4x^2
                     12x^4 - 24x^3
                     ------------------
                             22x^3 + 4x^2 - 3x
                             22x^3 - 44x^2
                             ------------------
                                     48x^2 - 3x + 1
                                     48x^2 - 96x
                                     ------------------
                                             93x + 1
                                             93x - 186
                                             ------------------
                                                     187
  1. The result: The quotient is 6x^4 + 12x^3 + 22x^2 + 48x + 93 and the remainder is 187.

Therefore, the final answer can be expressed as:

(6x^5-2x^3+4x^2-3x+1)/(x-2) = 6x^4 + 12x^3 + 22x^2 + 48x + 93 + 187/(x-2)