Expanding (7b^5 - b^2)^2
The expression (7b^5 - b^2)^2 represents the square of a binomial. To expand this, we can use the FOIL method or the square of a binomial formula.
Using the FOIL Method
- First: Multiply the first terms of each binomial: (7b^5)(7b^5) = 49b^10
- Outer: Multiply the outer terms of the binomials: (7b^5)(-b^2) = -7b^7
- Inner: Multiply the inner terms of the binomials: (-b^2)(7b^5) = -7b^7
- Last: Multiply the last terms of each binomial: (-b^2)(-b^2) = b^4
Now, combine the terms:
49b^10 - 7b^7 - 7b^7 + b^4 = 49b^10 - 14b^7 + b^4
Using the Square of a Binomial Formula
The square of a binomial formula states: (a - b)^2 = a^2 - 2ab + b^2
In our case, a = 7b^5 and b = b^2. Applying the formula:
(7b^5 - b^2)^2 = (7b^5)^2 - 2(7b^5)(b^2) + (b^2)^2
Simplifying:
(7b^5)^2 - 2(7b^5)(b^2) + (b^2)^2 = 49b^10 - 14b^7 + b^4
Therefore, the expanded form of (7b^5 - b^2)^2 is 49b^10 - 14b^7 + b^4.