(8−3a2)(2a2+6)

2 min read Jun 16, 2024
(8−3a2)(2a2+6)

Expanding the Expression (8−3a2)(2a2+6)

In this article, we will learn how to expand the expression (8−3a2)(2a2+6).

Using the Distributive Property

The distributive property states that for any numbers a, b, and c: a(b+c) = ab+ac. We can use this property to expand the given expression.

First, we distribute the 8:

8(2a2+6) = 16a2 + 48

Next, we distribute the -3a2:

-3a2(2a2+6) = -6a4 - 18a2

Finally, we combine the two results:

(8−3a2)(2a2+6) = 16a2 + 48 - 6a4 - 18a2

Simplifying the expression, we get:

(8−3a2)(2a2+6) = -6a4 - 2a2 + 48

Alternative Method: FOIL

Another way to expand the expression is using the FOIL method. FOIL stands for First, Outer, Inner, Last.

  • First: Multiply the first terms of each binomial: 8 * 2a2 = 16a2
  • Outer: Multiply the outer terms of each binomial: 8 * 6 = 48
  • Inner: Multiply the inner terms of each binomial: -3a2 * 2a2 = -6a4
  • Last: Multiply the last terms of each binomial: -3a2 * 6 = -18a2

Combining all the terms, we again get:

(8−3a2)(2a2+6) = 16a2 + 48 - 6a4 - 18a2

Simplifying the expression, we get:

(8−3a2)(2a2+6) = -6a4 - 2a2 + 48

Conclusion

We can use either the distributive property or the FOIL method to expand the expression (8−3a2)(2a2+6). Both methods lead to the same simplified expression: -6a4 - 2a2 + 48.

Related Post


Featured Posts