(a+2b)(3a+b)-(a+b)(a+2b)+(a+2b)^2

2 min read Jun 16, 2024
(a+2b)(3a+b)-(a+b)(a+2b)+(a+2b)^2

Simplifying the Expression (a+2b)(3a+b)-(a+b)(a+2b)+(a+2b)^2

This article will guide you through simplifying the expression: (a+2b)(3a+b)-(a+b)(a+2b)+(a+2b)^2

Step 1: Expanding the Products

Let's begin by expanding each of the products in the expression:

  • (a+2b)(3a+b) = 3a² + ab + 6ab + 2b² = 3a² + 7ab + 2b²
  • (a+b)(a+2b) = a² + 2ab + ab + 2b² = a² + 3ab + 2b²
  • (a+2b)² = (a+2b)(a+2b) = a² + 2ab + 2ab + 4b² = a² + 4ab + 4b²

Step 2: Substituting the Expanded Products

Now, substitute the expanded products back into the original expression:

(3a² + 7ab + 2b²) - (a² + 3ab + 2b²) + (a² + 4ab + 4b²)

Step 3: Combining Like Terms

Finally, combine the like terms to simplify the expression:

3a² + 7ab + 2b² - a² - 3ab - 2b² + a² + 4ab + 4b² = 3a² - a² + a² + 7ab - 3ab + 4ab + 2b² - 2b² + 4b² = 3a² + 8ab + 4b²

Conclusion

Therefore, the simplified form of the expression (a+2b)(3a+b)-(a+b)(a+2b)+(a+2b)^2 is 3a² + 8ab + 4b².

Related Post


Featured Posts