Factoring the Expression (a^2 + b^2 - 4c^2)^2 - 4a^2b^2
The expression (a^2 + b^2 - 4c^2)^2 - 4a^2b^2 can be factored using the "difference of squares" pattern. Here's how:
Understanding the Difference of Squares Pattern
The difference of squares pattern states that: x^2 - y^2 = (x + y)(x - y)
Applying the Pattern to Our Expression
-
Recognize the Squares:
- (a^2 + b^2 - 4c^2)^2 is the square of the expression (a^2 + b^2 - 4c^2).
- 4a^2b^2 is the square of 2ab.
-
Substitute and Factor:
- Let x = (a^2 + b^2 - 4c^2)
- Let y = 2ab
Now we have: x^2 - y^2 = (x + y)(x - y)
Substitute back: (a^2 + b^2 - 4c^2)^2 - 4a^2b^2 = [(a^2 + b^2 - 4c^2) + 2ab][(a^2 + b^2 - 4c^2) - 2ab]
-
Simplify: (a^2 + b^2 - 4c^2)^2 - 4a^2b^2 = (a^2 + b^2 + 2ab - 4c^2)(a^2 + b^2 - 2ab - 4c^2)
Final Factored Form
Therefore, the factored form of (a^2 + b^2 - 4c^2)^2 - 4a^2b^2 is (a^2 + b^2 + 2ab - 4c^2)(a^2 + b^2 - 2ab - 4c^2).