Simplifying Exponential Expressions: (a^2 b^-3)^4/(a^2 b^6)^-1
This article will guide you through simplifying the complex exponential expression: (a^2 b^-3)^4/(a^2 b^6)^-1.
Understanding the Rules
Before we dive into the simplification process, let's refresh our memory on some key exponent rules:
- Product of powers: a^m * a^n = a^(m+n)
- Quotient of powers: a^m / a^n = a^(m-n)
- Power of a power: (a^m)^n = a^(m*n)
- Negative exponent: a^-n = 1/a^n
Applying the Rules
Let's break down the simplification step-by-step:
-
Apply the power of a power rule:
- (a^2 b^-3)^4 = a^(24) b^(-34) = a^8 b^-12
- (a^2 b^6)^-1 = a^(2*-1) b^(6*-1) = a^-2 b^-6
-
Substitute the simplified terms into the original expression:
- (a^8 b^-12) / (a^-2 b^-6)
-
Apply the quotient of powers rule:
- a^(8 - (-2)) b^(-12 - (-6))
-
Simplify:
- a^10 b^-6
-
Apply the negative exponent rule to b^-6:
- a^10 / b^6
Final Answer
Therefore, the simplified form of (a^2 b^-3)^4/(a^2 b^6)^-1 is a^10 / b^6.