Simplifying the Expression: (a-6)² - 2(a-5)(a-7)
This article will guide you through the process of simplifying the algebraic expression: (a-6)² - 2(a-5)(a-7).
Expanding the Squares and Products
-
Expand (a-6)²:
- Remember that (a-6)² is equivalent to (a-6)(a-6).
- Using the FOIL method (First, Outer, Inner, Last), we get:
- (a * a) + (a * -6) + (-6 * a) + (-6 * -6) = a² - 12a + 36
-
Expand 2(a-5)(a-7):
- First, expand (a-5)(a-7) using FOIL:
- (a * a) + (a * -7) + (-5 * a) + (-5 * -7) = a² - 12a + 35
- Then, multiply the result by 2:
- 2(a² - 12a + 35) = 2a² - 24a + 70
Combining Like Terms
Now we have: a² - 12a + 36 - (2a² - 24a + 70)
- Distribute the negative sign: a² - 12a + 36 - 2a² + 24a - 70
- Combine like terms: (a² - 2a²) + (-12a + 24a) + (36 - 70)
- Simplify: -a² + 12a - 34
Final Simplified Expression
Therefore, the simplified form of the expression (a-6)² - 2(a-5)(a-7) is -a² + 12a - 34.