(a-b)(a^2+ab+b^2)-(a+b)(a^2-ab+b^2)=-2b^3

3 min read Jun 16, 2024
(a-b)(a^2+ab+b^2)-(a+b)(a^2-ab+b^2)=-2b^3

Proving the Identity: (a-b)(a^2+ab+b^2)-(a+b)(a^2-ab+b^2)=-2b^3

This article aims to prove the algebraic identity: (a-b)(a^2+ab+b^2)-(a+b)(a^2-ab+b^2)=-2b^3

We will achieve this by expanding both sides of the equation and simplifying the results.

Expanding the Left-Hand Side

Let's begin by expanding the left-hand side of the equation: (a-b)(a^2+ab+b^2)-(a+b)(a^2-ab+b^2)

We can use the distributive property (also known as FOIL) to expand each term:

  • (a-b)(a^2+ab+b^2) = a(a^2+ab+b^2) - b(a^2+ab+b^2)
  • (a+b)(a^2-ab+b^2) = a(a^2-ab+b^2) + b(a^2-ab+b^2)

Expanding further, we get:

  • a(a^2+ab+b^2) - b(a^2+ab+b^2) = a^3 + a^2b + ab^2 - a^2b - ab^2 - b^3
  • a(a^2-ab+b^2) + b(a^2-ab+b^2) = a^3 - a^2b + ab^2 + a^2b - ab^2 + b^3

Combining like terms on both sides, we get:

  • a^3 + a^2b + ab^2 - a^2b - ab^2 - b^3 = a^3 - b^3
  • a^3 - a^2b + ab^2 + a^2b - ab^2 + b^3 = a^3 + b^3

Now, subtracting the second expression from the first:

(a^3 - b^3) - (a^3 + b^3) = -2b^3

Conclusion

Therefore, we have successfully proven the identity: (a-b)(a^2+ab+b^2)-(a+b)(a^2-ab+b^2)=-2b^3

This demonstrates that the expression on the left-hand side simplifies to the expression on the right-hand side, which is -2b^3.

Related Post


Featured Posts