(iv) (3a^(5)-2a^(4)+a^(3)-2) By (a^(2)+a+1)

6 min read Jun 16, 2024
(iv) (3a^(5)-2a^(4)+a^(3)-2) By (a^(2)+a+1)

Polynomial Long Division: (3a^(5)-2a^(4)+a^(3)-2) by (a^(2)+a+1)

Polynomial long division is a method used to divide polynomials, similar to long division with numbers. Here's how to divide (3a^(5)-2a^(4)+a^(3)-2) by (a^(2)+a+1):

Steps:

  1. Set up the division:

         ____________
    a^2+a+1 | 3a^5 - 2a^4 + a^3  - 2 
    
  2. Divide the leading terms:

    • The leading term of the divisor (a^(2)) goes into the leading term of the dividend (3a^(5)) 3a^(3) times.
    • Write 3a^(3) above the dividend.
         3a^3 _______
    a^2+a+1 | 3a^5 - 2a^4 + a^3  - 2 
    
  3. Multiply the divisor by the quotient term:

    • Multiply (a^(2)+a+1) by 3a^(3) to get 3a^(5) + 3a^(4) + 3a^(3).
         3a^3 _______
    a^2+a+1 | 3a^5 - 2a^4 + a^3  - 2 
             3a^5 + 3a^4 + 3a^3
    
  4. Subtract:

    • Subtract the result from the dividend. Remember to change the signs of the terms being subtracted.
         3a^3 _______
    a^2+a+1 | 3a^5 - 2a^4 + a^3  - 2 
             3a^5 + 3a^4 + 3a^3
             -----------------
                  -5a^4 - 2a^3 
    
  5. Bring down the next term:

    • Bring down the next term of the dividend (-2).
         3a^3 _______
    a^2+a+1 | 3a^5 - 2a^4 + a^3  - 2 
             3a^5 + 3a^4 + 3a^3
             -----------------
                  -5a^4 - 2a^3 - 2 
    
  6. Repeat steps 2-5:

    • The leading term of the divisor (a^(2)) goes into the leading term of the new dividend (-5a^(4)) -5a^(2) times.
    • Multiply the divisor (a^(2)+a+1) by -5a^(2) and subtract the result.
    • Bring down the next term (-2).
         3a^3 - 5a^2 ______
    a^2+a+1 | 3a^5 - 2a^4 + a^3  - 2 
             3a^5 + 3a^4 + 3a^3
             -----------------
                  -5a^4 - 2a^3 - 2 
                  -5a^4 - 5a^3 - 5a^2
                  --------------------
                        3a^3 + 5a^2 - 2
    
  7. Repeat steps 2-5 again:

    • The leading term of the divisor (a^(2)) goes into the leading term of the new dividend (3a^(3)) 3a times.
    • Multiply the divisor (a^(2)+a+1) by 3a and subtract the result.
         3a^3 - 5a^2 + 3a _______
    a^2+a+1 | 3a^5 - 2a^4 + a^3  - 2 
             3a^5 + 3a^4 + 3a^3
             -----------------
                  -5a^4 - 2a^3 - 2 
                  -5a^4 - 5a^3 - 5a^2
                  --------------------
                        3a^3 + 5a^2 - 2
                        3a^3 + 3a^2 + 3a
                        ------------------
                              2a^2 - 3a - 2
    
  8. Repeat steps 2-5 one last time:

    • The leading term of the divisor (a^(2)) goes into the leading term of the new dividend (2a^(2)) 2 times.
    • Multiply the divisor (a^(2)+a+1) by 2 and subtract the result.
         3a^3 - 5a^2 + 3a + 2 _______
    a^2+a+1 | 3a^5 - 2a^4 + a^3  - 2 
             3a^5 + 3a^4 + 3a^3
             -----------------
                  -5a^4 - 2a^3 - 2 
                  -5a^4 - 5a^3 - 5a^2
                  --------------------
                        3a^3 + 5a^2 - 2
                        3a^3 + 3a^2 + 3a
                        ------------------
                              2a^2 - 3a - 2
                              2a^2 + 2a + 2
                              ------------
                                   -5a - 4
    
  9. The remainder:

    • The final result is -5a-4. This is the remainder, and it has a degree less than the divisor.

Therefore, the result of dividing (3a^(5)-2a^(4)+a^(3)-2) by (a^(2)+a+1) is:

3a^(3) - 5a^(2) + 3a + 2 with a remainder of -5a-4

This can be written as:

3a^(3) - 5a^(2) + 3a + 2 + (-5a-4)/(a^(2)+a+1)

Related Post