(k^3-k^2-k-2)/(k-2)

5 min read Jun 16, 2024
(k^3-k^2-k-2)/(k-2)

Simplifying the Expression (k^3 - k^2 - k - 2) / (k - 2)

This article will guide you through simplifying the expression (k^3 - k^2 - k - 2) / (k - 2). We will use polynomial long division to achieve this.

Polynomial Long Division

  1. Set up the division:

    • Write the dividend (k^3 - k^2 - k - 2) inside the division symbol.
    • Write the divisor (k - 2) outside the division symbol.
        ____________
    k - 2 | k^3 - k^2 - k - 2 
    
  2. Divide the leading terms:

    • Divide the leading term of the dividend (k^3) by the leading term of the divisor (k).
    • This gives us k^2.
    • Write k^2 above the division symbol, aligning it with the k^3 term.
        k^2        
    k - 2 | k^3 - k^2 - k - 2 
    
  3. Multiply the divisor by the quotient:

    • Multiply (k - 2) by k^2 to get k^3 - 2k^2.
    • Write this result below the dividend, aligning terms.
        k^2        
    k - 2 | k^3 - k^2 - k - 2 
           k^3 - 2k^2
    
  4. Subtract:

    • Subtract (k^3 - 2k^2) from (k^3 - k^2 - k - 2).
    • This gives us k^2 - k - 2.
        k^2        
    k - 2 | k^3 - k^2 - k - 2 
           k^3 - 2k^2
           ---------
               k^2 - k - 2
    
  5. Bring down the next term:

    • Bring down the next term from the dividend (-k).
        k^2        
    k - 2 | k^3 - k^2 - k - 2 
           k^3 - 2k^2
           ---------
               k^2 - k - 2
               - k
    
  6. Repeat steps 2-5:

    • Divide the leading term of the new dividend (k^2) by the leading term of the divisor (k). This gives us k.
    • Write k above the division symbol, aligning it with the k^2 term.
    • Multiply (k - 2) by k to get k^2 - 2k.
    • Subtract (k^2 - 2k) from (k^2 - k - 2).
    • Bring down the next term (-2).
        k^2 + k     
    k - 2 | k^3 - k^2 - k - 2 
           k^3 - 2k^2
           ---------
               k^2 - k - 2
               - k
               ---------
                   k - 2 
    
  7. Repeat steps 2-5:

    • Divide the leading term of the new dividend (k) by the leading term of the divisor (k). This gives us 1.
    • Write 1 above the division symbol, aligning it with the k term.
    • Multiply (k - 2) by 1 to get k - 2.
    • Subtract (k - 2) from (k - 2).
    • We are left with 0.
        k^2 + k + 1
    k - 2 | k^3 - k^2 - k - 2 
           k^3 - 2k^2
           ---------
               k^2 - k - 2
               - k
               ---------
                   k - 2 
                   k - 2
                   -----
                      0
    

Result

Therefore, the simplified expression is: (k^3 - k^2 - k - 2) / (k - 2) = k^2 + k + 1

Note: This result is valid for all values of k except for k = 2, as the original expression is undefined when k = 2 (division by zero).

Related Post