Simplifying the Expression (k^3 - k^2 - k - 2) / (k - 2)
This article will guide you through simplifying the expression (k^3 - k^2 - k - 2) / (k - 2). We will use polynomial long division to achieve this.
Polynomial Long Division
-
Set up the division:
- Write the dividend (k^3 - k^2 - k - 2) inside the division symbol.
- Write the divisor (k - 2) outside the division symbol.
____________ k - 2 | k^3 - k^2 - k - 2
-
Divide the leading terms:
- Divide the leading term of the dividend (k^3) by the leading term of the divisor (k).
- This gives us k^2.
- Write k^2 above the division symbol, aligning it with the k^3 term.
k^2 k - 2 | k^3 - k^2 - k - 2
-
Multiply the divisor by the quotient:
- Multiply (k - 2) by k^2 to get k^3 - 2k^2.
- Write this result below the dividend, aligning terms.
k^2 k - 2 | k^3 - k^2 - k - 2 k^3 - 2k^2
-
Subtract:
- Subtract (k^3 - 2k^2) from (k^3 - k^2 - k - 2).
- This gives us k^2 - k - 2.
k^2 k - 2 | k^3 - k^2 - k - 2 k^3 - 2k^2 --------- k^2 - k - 2
-
Bring down the next term:
- Bring down the next term from the dividend (-k).
k^2 k - 2 | k^3 - k^2 - k - 2 k^3 - 2k^2 --------- k^2 - k - 2 - k
-
Repeat steps 2-5:
- Divide the leading term of the new dividend (k^2) by the leading term of the divisor (k). This gives us k.
- Write k above the division symbol, aligning it with the k^2 term.
- Multiply (k - 2) by k to get k^2 - 2k.
- Subtract (k^2 - 2k) from (k^2 - k - 2).
- Bring down the next term (-2).
k^2 + k k - 2 | k^3 - k^2 - k - 2 k^3 - 2k^2 --------- k^2 - k - 2 - k --------- k - 2
-
Repeat steps 2-5:
- Divide the leading term of the new dividend (k) by the leading term of the divisor (k). This gives us 1.
- Write 1 above the division symbol, aligning it with the k term.
- Multiply (k - 2) by 1 to get k - 2.
- Subtract (k - 2) from (k - 2).
- We are left with 0.
k^2 + k + 1 k - 2 | k^3 - k^2 - k - 2 k^3 - 2k^2 --------- k^2 - k - 2 - k --------- k - 2 k - 2 ----- 0
Result
Therefore, the simplified expression is: (k^3 - k^2 - k - 2) / (k - 2) = k^2 + k + 1
Note: This result is valid for all values of k except for k = 2, as the original expression is undefined when k = 2 (division by zero).