(x+4)(x+2)(x-1)(x-3)

3 min read Jun 16, 2024
(x+4)(x+2)(x-1)(x-3)

Expanding and Simplifying (x+4)(x+2)(x-1)(x-3)

This article will guide you through expanding and simplifying the expression (x+4)(x+2)(x-1)(x-3).

Step 1: Expand the First Two Binomials

We begin by expanding the first two binomials, (x+4)(x+2), using the FOIL method:

  • First: x * x = x²
  • Outer: x * 2 = 2x
  • Inner: 4 * x = 4x
  • Last: 4 * 2 = 8

Combining like terms, we get: x² + 2x + 4x + 8 = x² + 6x + 8

Step 2: Expand the Last Two Binomials

Now, we expand the remaining binomials, (x-1)(x-3), using the FOIL method again:

  • First: x * x = x²
  • Outer: x * -3 = -3x
  • Inner: -1 * x = -x
  • Last: -1 * -3 = 3

Combining like terms, we obtain: x² - 3x - x + 3 = x² - 4x + 3

Step 3: Multiply the Expanded Binomials

We now have the simplified expressions for the first two binomials and the last two binomials:

  • (x+4)(x+2) = x² + 6x + 8
  • (x-1)(x-3) = x² - 4x + 3

We multiply these expressions together:

(x² + 6x + 8)(x² - 4x + 3)

To multiply these trinomials, we can use the distributive property:

  • x² * (x² - 4x + 3) = x⁴ - 4x³ + 3x²
  • 6x * (x² - 4x + 3) = 6x³ - 24x² + 18x
  • 8 * (x² - 4x + 3) = 8x² - 32x + 24

Now, we add all these terms together:

x⁴ - 4x³ + 3x² + 6x³ - 24x² + 18x + 8x² - 32x + 24

Step 4: Combine Like Terms

Finally, we combine like terms to get the fully simplified expression:

x⁴ + 2x³ - 13x² - 14x + 24

Therefore, the simplified expression for (x+4)(x+2)(x-1)(x-3) is x⁴ + 2x³ - 13x² - 14x + 24.