(x+4)(x+6)+(x-1)(x+7)

2 min read Jun 16, 2024
(x+4)(x+6)+(x-1)(x+7)

Expanding and Simplifying the Expression (x+4)(x+6)+(x-1)(x+7)

This article will guide you through the process of expanding and simplifying the expression (x+4)(x+6)+(x-1)(x+7).

Expanding the Expression

We will use the FOIL method to expand each of the products:

  • First: Multiply the first terms of each binomial.
  • Outer: Multiply the outer terms of each binomial.
  • Inner: Multiply the inner terms of each binomial.
  • Last: Multiply the last terms of each binomial.

Step 1: Expanding (x+4)(x+6)

  • F: x * x = x²
  • O: x * 6 = 6x
  • I: 4 * x = 4x
  • L: 4 * 6 = 24

Combining the terms, we get: x² + 6x + 4x + 24

Step 2: Expanding (x-1)(x+7)

  • F: x * x = x²
  • O: x * 7 = 7x
  • I: -1 * x = -x
  • L: -1 * 7 = -7

Combining the terms, we get: x² + 7x - x - 7

Combining the Expanded Terms

Now we have: (x² + 6x + 4x + 24) + (x² + 7x - x - 7)

Step 3: Combine like terms:

  • x² + x² = 2x²
  • 6x + 4x + 7x - x = 16x
  • 24 - 7 = 17

Simplified Expression

The simplified expression is: 2x² + 16x + 17

Therefore, (x+4)(x+6)+(x-1)(x+7) = 2x² + 16x + 17

Featured Posts