Simplifying the Expression (x^3 + 3x^2 - x - 3) / (x - 1)
This expression represents a rational function, a fraction where both the numerator and denominator are polynomials. To simplify this expression, we can use polynomial long division.
Performing Long Division
-
Set up the division:
________ x-1 | x^3 + 3x^2 - x - 3
-
Divide the leading terms:
- The leading term of the divisor (x - 1) is 'x'.
- The leading term of the dividend (x^3 + 3x^2 - x - 3) is 'x^3'.
- x^3 / x = x^2
- Write x^2 above the dividend:
x^2 ______ x-1 | x^3 + 3x^2 - x - 3
-
Multiply the divisor by the quotient:
- (x - 1) * x^2 = x^3 - x^2
- Write the result below the dividend:
x^2 ______ x-1 | x^3 + 3x^2 - x - 3 x^3 - x^2
-
Subtract the result from the dividend:
x^2 ______ x-1 | x^3 + 3x^2 - x - 3 x^3 - x^2 ------- 4x^2 - x - 3
-
Bring down the next term:
x^2 ______ x-1 | x^3 + 3x^2 - x - 3 x^3 - x^2 ------- 4x^2 - x - 3
-
Repeat steps 2-5:
- Divide the leading term of the new dividend (4x^2) by the leading term of the divisor (x): 4x^2 / x = 4x
- Write 4x above the dividend:
x^2 + 4x ______ x-1 | x^3 + 3x^2 - x - 3 x^3 - x^2 ------- 4x^2 - x - 3
- Multiply the divisor (x - 1) by 4x: (x - 1) * 4x = 4x^2 - 4x
- Write the result below the dividend:
x^2 + 4x ______ x-1 | x^3 + 3x^2 - x - 3 x^3 - x^2 ------- 4x^2 - x - 3 4x^2 - 4x
- Subtract the result:
x^2 + 4x ______ x-1 | x^3 + 3x^2 - x - 3 x^3 - x^2 ------- 4x^2 - x - 3 4x^2 - 4x ------ 3x - 3
- Bring down the next term:
x^2 + 4x ______ x-1 | x^3 + 3x^2 - x - 3 x^3 - x^2 ------- 4x^2 - x - 3 4x^2 - 4x ------ 3x - 3
-
Repeat steps 2-5 again:
- Divide the leading term of the new dividend (3x) by the leading term of the divisor (x): 3x / x = 3
- Write 3 above the dividend:
x^2 + 4x + 3 ______ x-1 | x^3 + 3x^2 - x - 3 x^3 - x^2 ------- 4x^2 - x - 3 4x^2 - 4x ------ 3x - 3
- Multiply the divisor (x - 1) by 3: (x - 1) * 3 = 3x - 3
- Write the result below the dividend:
x^2 + 4x + 3 ______ x-1 | x^3 + 3x^2 - x - 3 x^3 - x^2 ------- 4x^2 - x - 3 4x^2 - 4x ------ 3x - 3 3x - 3
- Subtract the result:
x^2 + 4x + 3 ______ x-1 | x^3 + 3x^2 - x - 3 x^3 - x^2 ------- 4x^2 - x - 3 4x^2 - 4x ------ 3x - 3 3x - 3 ------ 0
-
The remainder is 0: This means that the divisor (x - 1) divides evenly into the dividend (x^3 + 3x^2 - x - 3).
Simplified Expression
The result of the long division shows that: (x^3 + 3x^2 - x - 3) / (x - 1) = x^2 + 4x + 3
This simplified expression is a quadratic polynomial.