(x^3+3x^2-x-3)/(x-1)

5 min read Jun 17, 2024
(x^3+3x^2-x-3)/(x-1)

Simplifying the Expression (x^3 + 3x^2 - x - 3) / (x - 1)

This expression represents a rational function, a fraction where both the numerator and denominator are polynomials. To simplify this expression, we can use polynomial long division.

Performing Long Division

  1. Set up the division:

         ________
    x-1 | x^3 + 3x^2 - x - 3 
    
  2. Divide the leading terms:

    • The leading term of the divisor (x - 1) is 'x'.
    • The leading term of the dividend (x^3 + 3x^2 - x - 3) is 'x^3'.
    • x^3 / x = x^2
    • Write x^2 above the dividend:
         x^2 ______
    x-1 | x^3 + 3x^2 - x - 3 
    
  3. Multiply the divisor by the quotient:

    • (x - 1) * x^2 = x^3 - x^2
    • Write the result below the dividend:
         x^2 ______
    x-1 | x^3 + 3x^2 - x - 3 
           x^3 - x^2 
    
  4. Subtract the result from the dividend:

         x^2 ______
    x-1 | x^3 + 3x^2 - x - 3 
           x^3 - x^2 
           -------
               4x^2 - x - 3
    
  5. Bring down the next term:

         x^2 ______
    x-1 | x^3 + 3x^2 - x - 3 
           x^3 - x^2 
           -------
               4x^2 - x - 3
    
  6. Repeat steps 2-5:

    • Divide the leading term of the new dividend (4x^2) by the leading term of the divisor (x): 4x^2 / x = 4x
    • Write 4x above the dividend:
         x^2 + 4x ______
    x-1 | x^3 + 3x^2 - x - 3 
           x^3 - x^2 
           -------
               4x^2 - x - 3
    
    • Multiply the divisor (x - 1) by 4x: (x - 1) * 4x = 4x^2 - 4x
    • Write the result below the dividend:
         x^2 + 4x ______
    x-1 | x^3 + 3x^2 - x - 3 
           x^3 - x^2 
           -------
               4x^2 - x - 3
               4x^2 - 4x
    
    • Subtract the result:
         x^2 + 4x ______
    x-1 | x^3 + 3x^2 - x - 3 
           x^3 - x^2 
           -------
               4x^2 - x - 3
               4x^2 - 4x
               ------
                      3x - 3
    
    • Bring down the next term:
         x^2 + 4x ______
    x-1 | x^3 + 3x^2 - x - 3 
           x^3 - x^2 
           -------
               4x^2 - x - 3
               4x^2 - 4x
               ------
                      3x - 3 
    
  7. Repeat steps 2-5 again:

    • Divide the leading term of the new dividend (3x) by the leading term of the divisor (x): 3x / x = 3
    • Write 3 above the dividend:
         x^2 + 4x + 3 ______
    x-1 | x^3 + 3x^2 - x - 3 
           x^3 - x^2 
           -------
               4x^2 - x - 3
               4x^2 - 4x
               ------
                      3x - 3 
    
    • Multiply the divisor (x - 1) by 3: (x - 1) * 3 = 3x - 3
    • Write the result below the dividend:
         x^2 + 4x + 3 ______
    x-1 | x^3 + 3x^2 - x - 3 
           x^3 - x^2 
           -------
               4x^2 - x - 3
               4x^2 - 4x
               ------
                      3x - 3 
                      3x - 3
    
    • Subtract the result:
         x^2 + 4x + 3 ______
    x-1 | x^3 + 3x^2 - x - 3 
           x^3 - x^2 
           -------
               4x^2 - x - 3
               4x^2 - 4x
               ------
                      3x - 3 
                      3x - 3
                      ------
                            0
    
  8. The remainder is 0: This means that the divisor (x - 1) divides evenly into the dividend (x^3 + 3x^2 - x - 3).

Simplified Expression

The result of the long division shows that: (x^3 + 3x^2 - x - 3) / (x - 1) = x^2 + 4x + 3

This simplified expression is a quadratic polynomial.

Featured Posts