Long Division of Polynomials: (x^3 - 4x - 10) / (x^2 - x - 6)
Long division is a fundamental technique in algebra used to divide polynomials. Let's explore how to divide the polynomial (x^3 - 4x - 10) by (x^2 - x - 6).
Step-by-Step Solution
-
Set up the division problem:
_______ x^2-x-6 | x^3 + 0x^2 - 4x - 10
- We add a placeholder term (0x^2) in the dividend to maintain order.
-
Divide the leading terms:
- (x^3) / (x^2) = x
- Write 'x' above the x term in the quotient.
x ______ x^2-x-6 | x^3 + 0x^2 - 4x - 10
-
Multiply the divisor by the quotient term:
- x * (x^2 - x - 6) = x^3 - x^2 - 6x
x ______ x^2-x-6 | x^3 + 0x^2 - 4x - 10 -(x^3 - x^2 - 6x) ----------------
-
Subtract the result:
- (x^3 + 0x^2 - 4x) - (x^3 - x^2 - 6x) = x^2 + 2x
x ______ x^2-x-6 | x^3 + 0x^2 - 4x - 10 -(x^3 - x^2 - 6x) ---------------- x^2 + 2x - 10
-
Bring down the next term:
x ______ x^2-x-6 | x^3 + 0x^2 - 4x - 10 -(x^3 - x^2 - 6x) ---------------- x^2 + 2x - 10
-
Repeat steps 2-5 with the new polynomial:
- (x^2) / (x^2) = 1
- Write '1' above the constant term in the quotient.
x + 1 ______ x^2-x-6 | x^3 + 0x^2 - 4x - 10 -(x^3 - x^2 - 6x) ---------------- x^2 + 2x - 10 -(x^2 - x - 6) ---------------- 3x - 4
-
The degree of the remainder (3x - 4) is less than the degree of the divisor (x^2 - x - 6), so we stop here.
Result
Therefore, the result of the long division is:
(x^3 - 4x - 10) / (x^2 - x - 6) = x + 1 + (3x - 4)/(x^2 - x - 6)
This means the quotient is (x + 1) and the remainder is (3x - 4).